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Abstract

In earlier work it was shown that each nonabelian finite simple group G has a conjugacy class C such
that, whenever 1 �= x ∈ G, the probability is greater than 1/10 that G = 〈x, y〉 for a random y ∈ C. Much
stronger asymptotic results were also proved. Here we show that, allowing equality, the bound 1/10 can be
replaced by 13/42; and, excluding an explicitly listed set of simple groups, the bound 2/3 holds.

We use these results to show that any nonabelian finite simple group G has a conjugacy class C such that,
if x1, x2 are nontrivial elements of G, then there exists y ∈ C such that G = 〈x1, y〉 = 〈x2, y〉. Similarly,
aside from one infinite family and a small, explicit finite set of simple groups, G has a conjugacy class
C such that, if x1, x2, x3 are nontrivial elements of G, then there exists y ∈ C such that G = 〈x1, y〉 =
〈x2, y〉 = 〈x3, y〉.

We also prove analogous but weaker results for almost simple groups.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In [16, Theorem I], it was shown that each nonabelian finite simple group G has a conjugacy
class C such that, whenever 1 �= x ∈ G, the probability is greater than 1/10 that G = 〈x, y〉 for
a random y ∈ C. The purpose of this note is to show that, aside from specific exceptions, the
bound 1/10 can be replaced by 2/3. For g, s ∈ G, let

P(g, s) := ∣∣{sh ∈ G
∣∣ h ∈ G,

〈
sh, g

〉 �= G
}∣∣ / ∣∣sG

∣∣
and

PG := min
1�=s∈G

max
1�=g∈G

P (g, s).



Author's personal copy

T. Breuer et al. / Journal of Algebra 320 (2008) 443–494 445

Table 1
Exceptions in Theorem 1.1

G PG |s|
�+(8,2) 29/42 15
A6 ∼= Sp(4,2)′ 5/9 5
�(7,3) 155/351 14
P�+(8,3) 194/455 20
A7 2/5 7
PSp(4,3) ∼= SU(4,2) 2/5 9
A5 1/3 5
M11 1/3 11

Then the following is our main result:

Theorem 1.1. Let G be a nonabelian finite simple group. Then one of the following holds:

(1) PG < 1/3,
(2) PG = 1/3 and G = �(2m + 1,3), m � 4 even,
(3) 1/2 < PG � 1/2 + 1/(2m+1 − 2) and G = Sp(2m,2), m � 3, or
(4) G is in Table 1.

In particular, PG � 29/42 in all cases.

Note that �(2m+ 1,3), m = 2,3, are in Table 1 (as �(5,3) ∼= PSp(4,3)). Since Sp(2m,2) =
�(2m + 1,2), the two infinite families of special cases in Theorem 1.1 are �(2m + 1, q) with
q � 3.

The proof is in the same spirit as [16], using the classification of finite simple groups. The
classification is used both for the list of simple groups to consider and for information about
maximal subgroups of these simple groups. However, this time much more care is needed in
small dimensions and for groups of Lie type over small fields. In general, the probabilistic argu-
ments in [16] settle most of what we need if the field or dimension is somewhat large (as already
noted in [16,20]); but we need to improve some results of [16] about fixed point ratios in certain
actions of finite simple groups. A crucial part of our argument consists of computations with the
computer system GAP [14]: we do not know any other way to handle quite a few cases involving
small fields and dimensions.

We apply Theorem 1.1 in the following situation. For any finite simple group G and any non-
identity element x ∈ G there is an element y ∈ G such that G = 〈x, y〉 (see [16, Section 1]);
this property is called “3/2-generation” of simple groups. The above theorem immediately im-
plies the following stronger version of this property, but some care is needed in dealing with the
exceptions in the theorem.

Theorem 1.2. Let G be a nonabelian finite simple group. Then G contains a conjugacy class C

of elements such that, for each choice of nonidentity x, y ∈ G, there is an element s in C such
that G = 〈x, s〉 = 〈y, s〉.

Moreover aside from the cases G = Sp(2m,2) (m � 3), A5, A6, and �+(8,2), for any non-
identity x, y, z ∈ G there is an element s ∈ C with G = 〈x, s〉 = 〈y, s〉 = 〈z, s〉.
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The notion of the spread of a group G is intended to provide a generalization of 3/2-
generation: a group is said to have spread at least k if, for any nonidentity x1, . . . , xk ∈ G, there is
some y ∈ G such that G = 〈xi, y〉 whenever 1 � i � k. There are quite a few papers concerning
spread [1,3–7,12,16,20]. In [16] and [20] it was shown that all but at most finitely many simple
groups have spread at least 2, and there are infinitely many simple groups (such as Sp(2m,2)

for m � 3) that have spread exactly 2. Asymptotic results for the spread are in [1,16,20]. As a
consequence of Theorem 1.2, we settle the question of spread 2. More generally, we also handle
the more restricted notion of uniform spread, where we require s to lie in a single conjugacy
class of G independent of the choice of the elements xi :

Corollary 1.3. Every nonabelian finite simple group has uniform spread at least 2. The groups
that have uniform spread exactly 2 are Sp(2m,2) ( for m � 3), A5, A6, and �+(8,2); these
exceptions also have spread exactly 2.

In general, spread and uniform spread need not coincide. For example, the group SL(3,2) has
uniform spread exactly 3 but spread exactly 4. Note that the above corollary is clearly true for
the abelian simple groups as well.

In [16] we proved versions of the above results for each almost simple group G whose socle is
a nonabelian simple group S (so F ∗(G) = S � G � Aut(S)). It was shown in this slightly more
general setting that there is still a conjugacy class C of elements of G such that each nonidentity
element in G generates at least S with each of more than 1/10 of the elements in C. Here we
improve this to 1/2 (with a small number of exceptions plus the one infinite family Sp(2m,2)).
If g, s ∈ G, define

P ′(g, s) := 1 − ∣∣{t ∈ sG
∣∣ 〈t, g〉 � S

}∣∣ / ∣∣sG
∣∣. (1.1)

Clearly P(g, s) = P ′(g, s) when G = S.

Theorem 1.4. Let S be a nonabelian finite simple group and G a group with F ∗(G) = S. Then
there exists an s ∈ G such that one of the following holds:

(1) P ′(g, s) < 1/2 for all nontrivial g ∈ G;
(2) G = Sp(2m,2), m � 3, and P ′(g, s) < 1/2 unless g ∈ G is a transvection or is trivial; or
(3) S = A6 or �+(8,2), and P ′(g, s) � 29/42 for all nontrivial g ∈ G.

Except when S = A6 or G = S2m+1, we can choose s ∈ S. Moreover, except when S =
A2m+1,A6,�

+(8,2) or P�+(8,3), we can choose s independent of the specific subgroup G � S

of Aut(S).

In the following corollary some care has to be taken when dealing with case (3) of Theo-
rem 1.4. Case (2) has already been dealt with in Theorem 1.2. Note that it has been known for
quite a while that Sn has spread at least 2 [4].

Corollary 1.5. Let G be a finite group with S := F ∗(G) nonabelian simple. If x, y are nontrivial
elements of G, then there exists s ∈ G such that 〈x, s〉 and 〈y, s〉 both contain S. Moreover, aside
from the case S = A6, we can choose s ∈ S.
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Remark 1.6. Except when S is one of the groups �+(8,2), P�+(8,3), or A6, s can be chosen
from a prescribed conjugacy class of elements in S (independent of G). In the first two of these
exceptional cases, s can be chosen from a prescribed Aut(S)-conjugacy class of elements in S.
For S = A6, computation shows that no such restriction is possible.

The preceding corollary (as well as the weaker main theorem in [16]) can be used to char-
acterize the solvable radical of a finite group (see [17] for this and further results in the same
vein):

Corollary 1.7. Let G be a finite group.

(1) For x ∈ G, 〈xG〉 is solvable if and only if 〈x, y〉 is solvable for each y ∈ G; and
(2) if x and y are elements of G neither of which is in the solvable radical of G, then there exists

s ∈ G with 〈x, s〉 and 〈y, s〉 both nonsolvable.

Corollary 1.5 is a bit weaker than saying that G has spread at least 2—in that we generate at
least S but not necessarily G. That corollary does not even imply that an almost simple group G

has spread at least 1; G/F ∗(G) could be noncyclic. Nevertheless, our proofs show that, if F ∗(G)

is a simple group of Lie type and G/F ∗(G) is generated by a diagonal automorphism, then G

has spread at least 2.
As noted above, symmetric groups have spread at least two; the same holds for all three

subgroups of index two in Aut(A6). Table 7 and the last two columns of Table 9 show that the
same holds for almost simple groups with sporadic socle.

Conjecture 1.8. Let G be a finite group. Then G has spread at least 1 if and only if G/N is
cyclic for every nontrivial normal subgroup N of G.

It is not difficult to see that, in order to prove the conjecture, it suffices to consider the case that
G has a unique minimal normal subgroup that is a direct product of nonabelian simple groups.
The forward implication in the conjecture is clear. We know of no finite group having spread at
least 1 that does not have spread at least 2.

We have already noted that, as in [16], our basic tool is fixed point ratios. Section 2 contains
background concerning these, together with remarks concerning the computational methodology
we use involving GAP [14]. Section 3 contains calculations concerning some specific fixed point
ratios. In Section 4, we give detailed results and tables for some smaller groups that were handled
computationally. In Sections 5 and 6, we run through all of the types of nonabelian finite simple
groups in order to verify Theorems 1.1, 1.2, and 1.4, and Corollaries 1.3 and 1.5.

2. Preliminaries

2.1. Fixed point ratios

All groups will be finite, as will the sets on which they act.
For a given group G and g, s ∈ G, as above let

P(g, s) = ∣∣{sh ∈ G
∣∣ h ∈ G,

〈
sh, g

〉 �= G
}∣∣ / ∣∣sG

∣∣,



Author's personal copy

448 T. Breuer et al. / Journal of Algebra 320 (2008) 443–494

the proportion of elements in the class sG which fail to generate with g. Thus, Theorem 1.1 states
that P(g, s) < 1/3 for s ∈ C whenever 1 �= g ∈ G (aside from the exceptions). Note that P(g, s)

is also the probability that random elements g′ ∈ gG and s′ ∈ sG do not generate G. In particular,

P(g, s) = P(s, g). (2.2)

For any action of G on a set X, and for any g ∈ G, consider the set FixX(g) of fixed points of
g on X, and the fixed point ratios

μ(g,X) := ∣∣FixX(g)
∣∣/|X|

and

μ(G,X) := max
{
μ(g,X)

∣∣ g ∈ G, g �= 1 on X
}
.

If G/M denotes the set of cosets of a subgroup M in G, then

μ(g,G/M) = ∣∣gG ∩ M
∣∣ / ∣∣gG

∣∣ = ∣∣gG ∩ M
∣∣∣∣CG(g)

∣∣/|G| (2.3)

(cf. [16, Section 2]).
For s ∈ G, letM(G, s) denote the set of maximal subgroups of G that contain s. Then

P(g, s) � σ(g, s) :=
∑

M∈M(G,s)

μ(g,G/M). (2.4)

Thus, in order to prove Theorem 1.1 for the group G, it is sufficient to show that

σ(G, s) := max
{
σ(g, s)

∣∣ 1 �= g ∈ G
}

(2.5)

is less than 1/3 for some s ∈ G. Note that this is usually the case, but occasionally fails to hold
(see Section 2.5 for further discussion).

For convenience, we define

P(G, s) := max
{
P(g, s)

∣∣ 1 �= g ∈ G
}
. (2.6)

Note that, throughout this paper, SU(d, q) and GU(d, q) denote the special and the general
unitary group with natural module of dimension d over the field Fq2 . We regard these groups as
defined over the field Fq .

We will use the following general upper bound for μ(G,G/M):

Theorem 2.1. (See [25].) Suppose that L is a simple group of Lie type over Fq , not isomorphic to
any 2-dimensional linear group, alternating group or PSp(4,3), and let G be a group such that
L � G � Aut(L). Then μ(G,G/M) � 4/3q for any proper subgroup M of G not containing L.

We will also use the following bound in the proof of Theorem 1.4:

Theorem 2.2. (See [18].) Let F ∗(G) be a nonabelian simple group S acting primitively on a
set X. Let H denote the stabilizer of some x ∈ X. If 1 �= g ∈ G fixes at least |X|/2 points, then
one of the following holds (up to applying an automorphism of G):
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(1) S = An and X is the set of k-subsets for some 1 � k < n/2;
(2) G = S = Sp(2m,2), m > 2, H = �−(2m,2) and g is a transvection;
(3) G = O−(2m,2) �= S, m > 2, g is a transvection and X is the set of singular points; or
(4) G = O+(2m,2) �= S, m > 2, g is a transvection and X is the set of nonsingular points.

The next, much more elementary result, gives an upper bound for fixed point ratios for an
element that is in a proper subgroup about which we already have information concerning fixed
point ratios.

Lemma 2.3. Let G be a finite group acting transitively on a set, with point stabilizer U . Let
g ∈ G and suppose that H is a subgroup of G such that g ∈ H and μ(g,H/V ) � δ for every
proper subgroup V of H . Then μ(g,G/U) � δ+c/|G : U |, where c is the number of fixed points
of H on G/U .

In particular, if H is not conjugate to a subgroup of U then μ(g,G/U) � δ.

Proof. If Ω1,Ω2, . . . are the nontrivial H -orbits on G/U , then
∑

i |Ωi | = |G/U | − c. By
hypothesis, g fixes at most δ|Ωi | points of Ωi . Then g fixes at most δ(|G/U | − c) + c =
δ|G/U | + c(1 − δ) points of G/U . Thus, μ(g,G/U) � δ + c/|G : U |. �

This lemma will be used when G is a simple group of Lie type—in particular for symplectic
groups in odd characteristic—and H is an extension field subgroup (in particular, defined over a
larger field than G), in which case we can usually use the bound in Theorem 2.1 for H .

However, occasionally we need to be a bit careful when using that result since H need not
even be almost simple. If N is a normal subgroup of H and H/N is an almost simple group, then
μ(g,H/V ) � μ(g,H/(V N)) = μ(gN, (H/N)/(V N/N)) implies that a known global bound
for H/N can be used if g /∈ N ; this condition is satisfied if H = 〈gH 〉.
2.2. Almost simple groups

Consider Theorem 1.4, so that F ∗(G) = S is a nonabelian finite simple group. We now discuss
P ′(g, s) (cf. (1.1)). For the time being we will assume that Theorem 1.1 has been proved; note
that the constants required in these two theorems are different.

Fix a suitably chosen nontrivial element s ∈ S (by Theorem 1.1, in almost all cases we can
assume that P(g, s) < 1/2 for each 1 �= g ∈ S), and letM(S, s) be as above.

We first make some comments about computingM(G, s) in terms ofM(S, s). LetM′(G, s)

denote those subgroups inM(G, s) that do not contain S.
For purposes of Theorem 1.4 we may assume that g induces an outer automorphism of prime

order and G = 〈S,g〉. Set J := 〈s〈g〉〉. This is normalized by 〈g, s〉.
Lemma 2.4.

(1) J = S if and only if G = 〈g, s〉.
(2) M′(G, s) consists of the maximal elements in the set of normalizers in G of intersections of

those subsets ofM(S, s) all of whose members are G-conjugate.

Proof. (1) J is normal in 〈g, s〉, J � S and |G : S| is prime.
(2) Consider M ∈M′(G, s). Let h ∈ M \ S and M ∩ S � M1 ∈M(S, s). Clearly X :=⋂

i M
hi

1 is one of the intersections in (2). Since M ∩ S normalizes each conjugate Mhi

1 , we
have M = 〈M ∩ S,h〉 � NG(X) and so M = NG(X). �
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In the special case thatM(S, s) consists of nonconjugate subgroups of S, the preceding dis-
cussion shows that:

Lemma 2.5. Assume that M(S, s) consists of subgroups no two of which are conjugate
in S. Then |M′(G, s)| � |M(S, s)|. If no two members of M(S, s) are conjugate in G, then
M′(G, s) = {NG(M) | NG(M) �= M ∈M(S, s)}.

(Here NG(M) �= M since no proper subgroup of S can be maximal in G.)
We see that Theorem 1.4 will follow using fixed point ratio results in the same manner as for

the simple group; usually the estimates for fixed point ratios are the same for the simple group
and the almost simple group, and even when they are weaker for the almost simple group, we
are only aiming for 1/2 rather than 1/3 as an upper bound. A special case which often occurs is
when |M(S, s)| = 1:

Proposition 2.6. Let S be a nonabelian finite simple group not isomorphic to an alternating
group, Sp(2m,2) or �±(2m,2), m > 2. Let s ∈ S and assume that either |M(S, s)| = 1 or
|M′(G, s)| � 1. If 1 �= g ∈ Aut(S), then P ′(g, s) < 1/2.

Proof. By the preceding lemma, the hypotheses imply that |M′(G, s)| � 1. If M′(G, s) is
empty, then 〈x, s〉 = G for each x ∈ G \ S. Otherwise, if M′(G, s) = {M} then P ′(g, s) =
μ(g,G/M) < 1/2 by Theorem 2.2. �

If some distinct members ofM(S, s) are S-conjugate then the situation is more complicated,
and individual arguments are needed. (For the elements we use, this happens only for Sp(4m,q)

(q odd) and �+(4m,q).)
There is one more situation where we can computeM(G, s) rather easily fromM(S, s):

Lemma 2.7. Assume thatM(S, s) = {M1,M2,M3, . . . ,Mt }, where M1 ∩M2 � M3 and Mi and
Mj are not conjugate in G for all pairs {i, j} �= {1,2}. ThenM′(G, s) ⊆ {NG(Mi) | 1 � i � t}.

Proof. By Lemma 2.4, any member ofM′(G, s) is either NG(Mi) for some i or NG(M1 ∩M2).
Moreover, if h ∈ NG(M1 ∩ M2) then Mh

3 � (M1 ∩ M2)
h = M1 ∩ M2, so Mh

3 ∈M(S, s) and
hence M3 = Mh

3 by hypothesis. Thus, NG(M1 ∩ M2) � NG(M3). �
In various cases, if information concerningM(G, s) is readily available we will use this set

rather thanM(S, s) in order to compute directly (cf. Section 4.8).

2.3. Irreducible subspaces for GU(d, q) and O±(d, q)

The following result will be quite useful. We do not give the proof—it follows from the de-
scription of the maximal tori in classical groups. One can also give an elementary argument. In
most cases, when we apply the lemma, a power of the element will be of prime order and act
irreducibly; the result then follows from the order formulas for the groups in question.
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Lemma 2.8.

(a) Let G = GU(d, q) with natural module V . If g ∈ G and W is a nondegenerate 〈g〉-
irreducible subspace of V , then dimW is odd.

(b) Let G = O±(d, q) with natural module V . If g ∈ G and W is a nondegenerate 〈g〉-
irreducible subspace of V , then either dimW = 1 or dimW is even and W is of − type.

2.4. Some conjugacy lemmas

We record some results about conjugacy classes of semisimple elements in symplectic and
orthogonal groups.

Proposition 2.9. Let G = Sp(d, q) < GL(d, q) with Ḡ the corresponding algebraic group.

(1) If x ∈ Ḡ is semisimple, then its centralizer is connected.
(2) If x, y ∈ G are semisimple elements, then x and y are conjugate in G if and only if they are

conjugate in GL(d, q).

Proof. Let V̄ be the underlying d-dimensional space over the algebraic closure F̄. Let x be a
semisimple element. Then V̄ is an orthogonal direct sum of subspaces Vi such that the only
eigenvalues of x on Vi are αi and α−1

i for some nonzero distinct αi . Then CḠ(x) is a direct
product of the corresponding centralizers on Vi . If di = dimVi , then the centralizer on Vi is
either GL(di/2, F̄) if αi �= ±1 or Sp(di, F̄) if αi = ±1. Thus, CḠ(x) is connected. By Lang’s
Theorem, this implies that semisimple elements x, y ∈ G are conjugate in G if and only if they
are conjugate in Ḡ.

Thus, to prove (2) it suffices to show that the corresponding statement is true for the algebraic
group. One direction is clear. So assume that x and y are conjugate in GL(V̄ ). Then we can
decompose V̄ as above. Since Ḡ is transitive on the nondegenerate spaces of a given dimension,
we reduce to the case where V̄ = Vi . If αi = ±1, the result is clear. If not, then V̄ = U1 ⊕ U−1

where Uj is the α
j
i eigenspace of x on V̄ . Since Ḡ is transitive on pairs of complementary totally

isotropic subspaces, x and y are conjugate. �
The previous result is a special case of a more general result about semisimple elements in a

simply connected group. Since orthogonal groups in odd characteristic are not simply connected,
the result is somewhat more complicated in that case. Let x ∈ G = O±(d, q) be a semisimple
element. Let V be the underlying natural module over Fq . Write V = V1 ⊥ V−1 ⊥ V0 where V±1
is the ±1-eigenspace of x for i = ±1 and V0 = (V1 ⊥ V−1)

⊥.

Remark 2.10. Note that the type of V0 is determined by the type of V and the GL(V ) conjugacy
class of x. For we may write V as a direct sum of its homogeneous components. If W is a
nonself-dual component, then W ⊕ W ∗ is of + type; if W is self-dual, then W has + type if the
multiplicity of the simple composition factor is even and − type otherwise (using Lemma 2.8).
Thus, the type of V1 is uniquely determined by the type of V and the GL(V )-class of x.

Proposition 2.11. Let G = O±(d, q). Let x be a semisimple element of G and let V be the
natural module for G over Fq . There exists y ∈ G that is GL(V )-conjugate but not G-conjugate
to x if and only if q is odd and ±1 are both eigenvalues of x (in particular, x has even order).
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Proof. ⇐: Keeping the notation as above, we suppose that Vi are both nonzero for i = ±1. Then
we may write V1 ⊥ V−1 = U1 ⊥ U−1 where dimUi = dimVi but the type of Ui is the opposite
of Vi . Now take y = x on V0 but with U1 and U−1 its ±1 eigenspaces. Clearly, x and y are
GL(V )-conjugate, but since their eigenspaces are not isometric, they are not O(V )-conjugate.

⇒: First assume that 1 and −1 are not eigenvalues of x on V . Then, precisely as in the
symplectic case, the centralizer of x is connected and it suffices to prove the result over the
algebraic group. The same proof as in the symplectic case is valid (i.e., the algebraic group is
transitive on nondegenerate subspaces of a given isometry type and on complementary pairs of
totally singular subspaces).

Thus we can assume that x has an eigenvalue ±1, but not both. Replacing x by −x if nec-
essary, we may assume that 1 is an eigenvalue of x (so that −1 is not an eigenvalue when q is
odd).

Now write V = V1 ⊥ [x,V ]. As we noted prior to the proposition, the type of [x,V ] and so the
type of V1 = CV (x) (= FixV (x)) is determined by the GL(V ) class of x. So, if y ∈ G is GL(V )-
conjugate to x, then by conjugating in G (since G is transitive on nondegenerate subspaces of a
given type and dimension), we may assume that y is also trivial on V1 and [x,V ] = [y,V ]. Then
x and y are conjugate on [x,V ] by the first paragraph, and hence also on V . �

We will often use the following elementary result without comment.

Lemma 2.12. Let V be the natural module for a classical group G of dimension d over F := Fq .
Assume that x lies in an extension field subgroup M of G over Fqe .

(a) If xe is irreducible on V , then M is the only subgroup of G containing x corresponding to
an extension field of degree e over F .

(b) In particular, if x has order divisible by a primitive prime divisor p of qd − 1 not dividing e,
then M is the only subgroup of G containing x corresponding to an extension field of degree
e over F .

Proof. (a) Note that M has a normal subgroup M0 of index e: the subgroup that acts linearly on
V over the corresponding extension field E := Fqe . Then M/M0 acts as field automorphisms on
E/F . So if x is in a subgroup of G corresponding to an extension field of degree e, then xe must
centralize that extension field. Since xe is irreducible, CGL(V )(x

e) is cyclic and so xe centralizes
a unique extension field of degree e.

(b) xe also has order divisible by p and so is irreducible. �
2.5. Computational methodology

For a small number of groups G, the upper bounds given in Theorem 2.1 and Lemma 2.3 are
not adequate to prove Theorem 1.1 for G. In these cases, and for obtaining the exceptions in
Theorem 1.2, we use GAP [14] for explicit checks. The results are collected in Section 4. See [8]
for more information.

For simple groups G, three different tasks arise. First, we want to compute, for a given s ∈ G,
either the exact value of σ(G, s) or an upper bound for σ(G, s). Second, if this is not smaller
than 1/3, we want to compute P(G, s) (cf. (2.6)). Third, if this value is still too large, we want
to show the existence or nonexistence of an element s with the property stated in Theorem 1.2.
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The optimal situation for computing σ(G, s) is the availability of the character table and of
all primitive permutation characters of G. In this case, even min{σ(G, s) | 1 �= s ∈ G} can be
computed easily, as follows.

Let 1G
M denote the permutation character of the action of G on the right cosets of a sub-

group M . Then μ(g,G/M) = 1G
M(g)/1G

M(1). If M is a maximal subgroup of G that is not normal
in G, then 1G

M(s) equals the number of G-conjugates of M that contain s, so

σ(g, s) =
∑
M

1G
M(g) · 1G

M(s)/1G
M(1), (2.7)

where the sum is taken over a set of representatives M of G-conjugacy classes inM(G, s).
We are in this (optimal) situation when the table of marks (Burnside matrix) of G [10, Sec-

tion 180] is available or if the character tables of G and of all its maximal subgroups (and the
necessary class fusions) are available.

If not all primitive permutation characters of G are available then we first choose a suitable el-
ement s, determine the setM(G, s), and try to compute the permutation character values 1G

M(g)

for M ∈M(G, s) and conjugacy class representatives g of prime order. If the character table of
G is known then this can be done either by computing the conjugacy classes of M and their class
fusion in G, or by combinatorial means (cf. [9]). Without access to the character table of G, we
can compute (or estimate) the values |gM | and |gG ∩ M| for the relevant elements g.

Computing P(g, s) is necessary only for those—fortunately few—conjugacy class represen-
tatives g for which σ(g, s) is too large. The above character-theoretic methods are not sufficient
for this task. Since the conjugacy classes of these elements g are quite small (and much smaller
than the class of s), we actually compute P(s, g). In the computations, the question of whether g

together with the fixed element s generate G can be reformulated as the question of whether
FixX(s) ∩ FixX(g) is empty, where X is chosen as the disjoint union of the sets G/M , for
M ∈M(G, s). So we can compute P(g, s) as the proportion of those point sets in the G-orbit of
|FixX(g)| that intersect FixX(s) nontrivially. For example, ifM(G, s) = {M} then we take the
permutation representation of G on G/M and count the number of those sets in the G-orbit of
FixG/M(g) that contain the unique fixed point of s on G/M .

Finally, if we have to decide whether, for each triple (x, y, z) in the Cartesian product xG ×
yG × zG of conjugacy classes, an element s (in a prescribed conjugacy class C of G) exists such
that G = 〈x, s〉 = 〈y, s〉 = 〈z, s〉, we restrict the test to orbit representatives on xG × yG × zG

under the conjugation action. The existence of s can often be established by trying a few random
elements (in the class C), but exhaustive searches are needed for proving the nonexistence of
such an s, in order to establish the exceptions in Theorems 1.1, 1.2, 1.4 and Corollary 1.3.

In order to prove the statements about almost simple groups G, we have to consider only
the case that S = F ∗(G) has prime index in G, and use the same methods as for the simple
groups. In particular, Eq. (2.7) holds for the given s ∈ S and g ∈ G \ S, where the sum is taken
over representatives M of G-conjugacy classes inM(G, s). If no two members ofM(S, s) are
conjugate in G then the permutation character 1G

M in the equation is just the extension of the
permutation character 1S

M∩S that has been considered for the simple group S. In those cases
where some members ofM(S, s) are G-conjugate, we use that the setM(G, s) is known—the
main source for this is [11]. Note that nothing has to be shown in the case |M(S, s)| = 1, by
Proposition 2.6.

Most of the computations, in particular the character-theoretic ones, can be regarded as routine
calculations. However, these are based on the electronic availability of character tables of finite
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simple groups and related groups, and in fact several of these tables have been computed for this
paper.

The character-theoretic computations using known character tables required only a few sec-
onds of CPU time, whereas the computations of P(g, s) altogether took several hours of CPU
time (on a 2.5 GHz Pentium 4).

3. Some fixed point ratios

In this section we consider fixed point ratios for some actions of orthogonal, symplectic, and
linear groups. In each case let V denote the natural module.

3.1. Sp(2m,q), �+(2m,q) and quadratic extension fields

Let F = Fq ⊂ E = Fq2 .
Let G = Sp(2m,q), where we assume that m > 2 is even. We may identify V with an m-

dimensional space over E in such a way that H = Sp(m,q2).2 < G.
If 1 � k = 2� � m, let N2m(k, q) denote the number of nondegenerate k-dimensional sub-

spaces of V (with respect to the alternating bilinear form defining G). Since all such subspaces
are in a single G-orbit,

N2m(k, q) = qm2
(q2m − 1) · · · (q2 − 1)

q�2+(m−�)2
(q2� − 1) · · · (q2 − 1) · (q2(m−�) − 1) · · · (q2 − 1)

= q2�(m−�)(q2m − 1) · · · (q2(m−�+1) − 1)

(q2� − 1) · · · (q2 − 1)
.

Similarly, if 1 � k � m and S2m(k, q) is the number of totally singular k-spaces, then

S2m(k, q) = (q2m − 1) · · · (q2m−2k+2 − 1)

(qk − 1) · · · (q − 1)
.

Lemma 3.1. Let k be a multiple of 4 such that 4 � k � m/2. Then

N2m(k, q)/Nm

(
k/2, q2) � q4m−8.

Proof. If k = 2�, the above formula implies that

N2m(2k, q)/Nm

(
k, q2) = q�(m−�)(q2m−2 − 1)(q2m−6 − 1) · · · (q2m−2�+2 − 1)

(q2�−2 − 1)(q2�−6 − 1) · · · (q2 − 1)
.

This is smallest for l = 2, and so N2m(2k, q)/Nm(k, q2) > q2m−4 · q2m−4. �
Lemma 3.2. Suppose that k and m are even with 2 � k � m and m � 4.

(a) Then S2m(k, q)/Sm(k/2, q2) > q2m−3.
(b) If m � 6, then S2m(m,q)/Sm(m/2, q2) > q4m−8.
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Proof. From the above formula,

S2m(k, q)

Sm(k/2, q2)
= (q2m−2 − 1)(q2m−4 − 1) · · · (q2m−2k+2 − 1)

(qk−1 − 1)(qk−3 − 1) · · · (q − 1)
.

By calculus, the minimum of the right-hand side is achieved for k = 2, and is (q2m−2 − 1)/(q −
1) > q2m−3.

Moreover, when k = m and m � 6, the right-hand side is at least

(
qm−1 + 1

)(
q2m−4 − 1

)(
qm−3 + 1

)
> q4m−8,

as required in (b). �
We next record additional elementary estimates:

Lemma 3.3.

(a) |GU(2d,q)|
|GL(d,q2)| < 2q2d2

.

(b) |Sp(2m,q)|
|Sp(m,q2)| > 2qm2

/3 if m is even.

Proof. (a) Since

|GU(2d, q)|
|GL(d, q2)| = qd2

(q + 1)
(
q3 + 1

) · · · (q2d−1 + 1
)
< q2d2

∞∏
i=1

(
1 + 21−2i

)
,

it suffices to check that
∏∞

i=1(1 + 21−2i ) � 2. Take logarithms and note that ln(1 + 21−2i ) <

21−2i , while
∑∞

i=1 21−2i = 2/3 < ln 2.
(b) This time

|Sp(2m,q)|
|Sp(m,q2)| = qm2/2

m−1∏
odd i=1

(
q2i − 1

)

= qm2
m−1∏

odd i=1

(
1 − q−2i

)
> qm2

[
1 −

m−1∑
odd i=1

q−2i

]

> qm2[
1 − 1/

(
q2 − 1

)]
� qm2

(1 − 1/3),

as required. �
Lemma 3.4. Let H = Sp(m,q2).2 < G = Sp(2m,q) with m � 4 even. If g is any element in
G \ Z(G), then

(a) μ(g,G/H) � 1/q2m−3 for m > 4; and
(b) μ(g,G/H) � 1/(q − 1)(q3 − 1) if m = 4.
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Proof. We may assume that g ∈ H and |g| = r is prime or g2 ∈ Z(G). We will use (2.3). Recall
that F is a field of size q and E ⊃ F a field of size q2.

Case 1. r is odd and g semisimple. Then V is a completely reducible F [g]-module and g ∈ H ′
(since r is odd).

Subcase 1a. V restricted to g is not homogeneous (i.e., there are at least two nonisomorphic
simple F [g]-submodules of V ). Then either

(i) V = W ⊥ W ′ for some nondegenerate F [g]-submodules W and W ′ such that 0 < dimW � m

and homF [g](W,W ′) = 0, or
(ii) V = W ⊕ W ′, where the F [g]-modules W and W ′ are totally singular of dimension m and

homF [g](W,W ′) = 0.

Since g ∈ H ′ = Sp(m,E), it follows that E commutes with g and hence leaves invariant all its
homogeneous components; in particular, W and W ′ are E-spaces.

Consider (i) with d = dimW . The probability that a random element of gG is in H is at most
the probability that a random nondegenerate d-space is an E-subspace. Thus,

μ(g,G/H) � Nm

(
2d, q2)/N2m(d, q) � 1/q4m−8

by Lemma 3.1. In (ii), by Lemma 3.2 the same reasoning shows that

μ(g,G/H) � Sm

(
m/2, q2)/S2m(m,q) � 1/q2m−3.

Subcase 1b. g acts homogeneously on V . Note that g has no eigenvalues equal to ±1 (since it is
homogeneous and noncentral). If W is an irreducible F [g]-submodule of V , then V ∼= f W for
some positive integer f . Since V is self-dual, so is W . It follows that dimW = 2e is even. Then
2m = f · 2e and K = EndF [g](V ) is a field of size q2e. We may assume that F ⊂ E ⊆ K .

Clearly g has 2e distinct eigenvalues in K . Since G contains an element having the same
eigenvalues and preserving a decomposition of V into the pairwise orthogonal sum of f = 2m/2e

nondegenerate 2e-spaces, Proposition 2.9 implies that g preserves such a decomposition. In
particular, we may assume that W is nondegenerate. Similarly, as long as g does not act irre-
ducibly, g leaves invariant a totally singular 2e-space—for, G has an element g# having the
same eigenvalues and leaving invariant a totally singular subspace. By Proposition 2.9, g and g#

are conjugate in G.
Note that D := GU(m/e, qe) naturally embeds in G. Moreover, Z = Z(D) is cyclic of order

qe + 1, and V is a homogeneous F [Z]-module. By Proposition 2.9, we may assume that g is a
power of a generator g′ of Z, in which case CGL(V )(g) = CGL(V )(g

′) = CGL(V )(Z). Since H is
the intersection of G and the centralizer of some element in GL(V ), it follows that μ(g,G/H) =
μ(g′,G/H), so we may now assume that g = g′ has order qe + 1. (Consequently, we no longer
assume that g has prime order.)

We claim that D is CG(g) = CG(Z). If m = e, this is clear since Z is a maximal torus of G

and so is self-centralizing. If m > e, then D � CGL(2m,q)(Z) = GL(m/e, q2e) and D is generated
by some reflections within GL(m/e, q2e). Consequently, by [29], the only overgroups of D in
GL(m/e, q2e) either normalize D or contain SL(m/e, q2e). However, the latter group cannot
occur: it acts transitively on the Z-invariant 2e-dimensional subspaces of V , whereas we have
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seen that Z leaves invariant both totally singular and nondegenerate 2e-spaces. Thus, CG(Z)

normalizes D. Since NG(D)/D is cyclic of order 2e and acts faithfully on Z, this implies the
claim.

Recall that g ∈ H ′ and V is the direct sum of f = m/e irreducible F [g]-modules, each of
which is K-invariant and hence also an E[g]-module (since E ⊆ K). If σ denotes the qth power
Frobenius map on E, then there are precisely two irreducible E[g]-modules U and Uσ that are
F [g]-isomorphic to W . Thus, as an E[g]-module, V ∼= aU ⊕ bUσ for nonnegative integers a, b

such that a + b = m/e = f .
Each eigenvalue of g on U or W has order qe + 1. Since the eigenvalues of g on Uσ are

obtained by applying σ to those on U , while those on the dual of U are the reciprocals of those
on U , it follows that U and Uσ are dual E[g]-modules if and only if e = 1. Moreover, if e > 1
we see that U is self-dual.

Subsubcase 1bi. e = 1. Since Uσ is the dual of U , and V is a self-dual E[g]-module, we have
a = b. Hence, the H -class gH is uniquely determined: gG ∩ H = gH = gH ′

.
As noted above, g has two invariant complementary totally singular F -subspaces; each is a

homogeneous E[g]-module. Since each irreducible E[g]-module has E-dimension e = 1, this
implies that CH ′(g) � GL(m/2, q2). Since gG ∩ H = gH = gH ′

, CH (g) covers H/H ′, so that
|CH (g)| � 2|GL(m/2, q2)|.

Consequently, by Lemma 3.3,

μ(g,G/H) = |gH |
|gG| � |H ||GU(m,q)|

|G| · 2|GL(m/2, q2)|

� 2qm2/2

2qm2
/3

� q3−2m,

as required.

Subsubcase 1bii. e > 1. We have seen that U is self-dual. There are f +1 ordered pairs (a, b) of
nonnegative integers satisfying a + b = f , each of which produces a conjugacy class gH

a , where
ga decomposes the E-space V into the perpendicular sum of a copies of U and b copies of Uσ .
Thus, gG ∩ H = gG ∩ H ′ is the union of f + 1 = m/e + 1 conjugacy classes of H ′. Moreover,
|CH ′(ga)| � (qe + 1)m/e > qm.

Thus,

μ(g,G/H) <
(m/e + 1)|H ′|/qm

|gG| <
m|H ′||CG(g)|

qm|G| .

Since |CG(g)| = |D| = |GU(m/e, qe)| � 2qm2/e � 2qm2/2, by Lemma 3.3(b) we obtain

μ(g,G/H) <
m · 2qm2/2

qm · 2qm2
/3

� 1

q2m−3
,

as required.

Case 2. g ∈ H is an involution and q is even.
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Subcase 2a. g is conjugate to an element of H ′ but not to an element of H \H ′. Then the radical
W of CV (g) is a totally singular subspace of V canonically associated to g. As in Case 1a we
obtain μ(g,G/H) < 1/q2m−3.

Subcase 2b. g is (conjugate to) an element of H \ H ′. By Lang’s Theorem [15, Proposi-
tion 4.9.1(d)], all such involutions g are H ′-conjugate to field automorphisms. Thus, gG ∩ (H \
H ′) = gH ′

, dimF CV (g) = m, and CH ′(g) = Sp(m,q). Moreover, CV (g) is a totally singular
m-space (since q is even). Then CG(g) = Q · Sp(m,q), where Q is the unipotent radical of the
stabilizer of this maximal totally singular subspace. Thus,

|gG ∩ (H \ H ′)|
|gG| = |H ′ : CH ′(g)|

|G : CG(g)| = qm(m+1)/2

[G : H ′] .

Suppose that g is also conjugate to an element of H ′. As in Case 1b, we obtain |gG ∩
H ′|/|gG| � 1/q4m−8. Consequently,∣∣gG ∩ H

∣∣ / ∣∣gG
∣∣ � 1/q4m−8 + qm/

(
q2 − 1

)(
q6 − 1

) · · · (q2m−2 − 1
)
,

so that (a) or (b) holds.

Case 3. g ∈ H is an involution and q is odd.

Subcase 3a. g is conjugate to an element of H ′ but not to an element of H \ H ′.
Argue precisely as in Cases 1 and 2 for semisimple elements.

Subcase 3b. g is (conjugate to) an element of H \ H ′. By Lang’s Theorem [15, Proposi-
tion 4.9.1(d)], all such involutions g are H ′-conjugate to field automorphisms. Thus, gG ∩ (H \
H ′) = gH ′

, dimF CV (g) = m, and CH ′(g) = Sp(m,q). Moreover, CV (g) is a nondegenerate
m-space (since q is odd). Then CG(g) = Sp(m,q) × Sp(m,q), Thus,

|gG ∩ (H \ H ′)|
|gG| = |H ′ : CH ′(g)|

|G : CG(g)| = |Sp(m,q)|
[G : H ′] � qm(m+1)/2

[G : H ′] .

Suppose that g is also conjugate to an element h of H ′. Then gG ∩ H ′ = hH ′
and CH ′(h) =

Sp(m/2, q2)× Sp(m/2, q2) (in particular, m must be divisible by 4). Arguing as in the semisim-
ple case, we obtain |gG∩H ′|/|gG| � 1/q4m−8. Thus, we obtain the same bound as in Case 2. �

For orthogonal groups the next lemma contains the same bound as in the preceding one.
(N.B.—The “real” bound is considerably better, but the next lemma is already much more precise
than we need.)

Lemma 3.5. Let q and m > 4 both be even and G = O±(2m,q). Let H = O±(m,q2).2 < G. If
1 �= g ∈ G then μ(g,G/H) � 1/q2m−3.

Proof. Let X = Sp(2m,q) and Y = Sp(m,q2).2 � X with Y ∩ G = H . Then X = GY , because
[X : Y ] = [G : H ]. Thus, G/H and X/Y are isomorphic as G-sets, and the result follows from
Lemma 3.4. �
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3.2. An action of �+(8, q)

For q even or odd, the case G = �+(8, q) = �+(V ) is exceptional in our later arguments
(Section 5.7). We begin with an elementary observation:

Lemma 3.6. If s ∈ G has order (q2 +1)/gcd(2, q −1) and leaves invariant two F [s]-isomorphic
irreducible 4-spaces, then |CG(s)| � 4q2(q4 − 1)(q2 + 1) < 8q8.

Proof. By hypothesis V is a vector space over F [s] ∼= Fq4 . Then s leaves invariant precisely
q4 + 1 four-dimensional subspaces V (corresponding to the 1-spaces over Fq4 ). Suppose that a

of these 4-spaces are totally singular and b are nonsingular. Then a + b = q4 + 1, while a(q4 −
1) + b(q2 + 1)(q − 1) = (q4 − 1)(q3 + 1) is the number of nonzero singular vectors, so that
a = q2 + 1.

Apply triality to s in order to obtain s′ ∈ G fixing exactly q2 + 1 singular points. Then
CG(s′)/〈−1〉 is a proper subgroup of O−(4, q2) × (Zq2+1 : 4), so that |CG(s)| behaves as
stated. �

We note that this lemma can undoubtedly be proved without triality, but using triality seems
entertaining.

We will need information concerning a specific action of G when q � 4. Let δ = gcd(2, q−1).
Let V = U1 ⊥ U2 with Ui of type 4−, and let M < (O−(4, q) × O−(4, q))2 be the stabilizer in
G of {U1,U2}. Note that n := |G : M| = q8(q2 − 1)(q6 − 1)/4. Also, note that 2n is the number
of nondegenerate spaces of 4− type.

Lemma 3.7. For any g �= ±1 in G, μ(g,G/M) < 8/q4.

Proof. The proof is straightforward but a little tedious. Let G be the corresponding linear group
(so if q is odd, the order is doubled). We may assume that |g| is prime modulo Z(G). We
use (2.3). We also use the fact that the nontrivial eigenvalues of g on Ui occur in reciprocal
pairs. Slightly more care is needed when g has even order. Note that |G : M| is 1/2 times the
number of nondegenerate spaces of type 4−—i.e. it is q8(q6 − 1)(q2 − 1)/2.

Case 1. g has odd order dividing q − 1. If g has at least 3 nontrivial eigenvalues, we can replace
g by g′ of the same order with only 2 nontrivial eigenvalues that fixes fewer nondegenerate 4
spaces than g.

Any nondegenerate 4 space fixed by g is the sum of g-eigenspacing (with the nontrivial eigen-
values coming in pairs). Let a be a nontrivial eigenvalue. It suffices to count the number of
nondegenerate 4-spaces U1 of − type fixed by g where g acts nontrivially. The dimension of
the a-eigenspace is at most 4 and it is straightforward to see that the worst case is when it is
1-dimensional.

Let W be the fixed space of g. So W is nondegenerate and W⊥ is contained in X. Suppose that
W⊥ is of ε type. Thus, the number of such X is precisely the number of nondegenerate 2-spaces
of −ε type in X. One computes that this is at most q3(q + 1)2(q2 + 1), whence the result holds.

Case 2. g has odd order not dividing q(q − 1). Again, we can count the number of g-invariant
nondegenerate 4-spaces X of − type on which g acts nontrivially. Note that g must have fixed
points on X or act irreducibly on X (otherwise X would be of + type). If g acts irreducibly,
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then the total number of g-invariant 4 spaces on which it is nontrivial is at most q4 + 1 and we
are done as above. If g has fixed points on X, then the worst case is that the fixed space of g is
6-dimensional. The same estimate as in Case 1 holds.

Case 3. g has odd order dividing q .

Case 3a. g = 1 on U2. Then |gG ∩ M| = |gM | � 2 · q2(q2 + 1)/2 in view of the struc-
ture of O−(4, q) ∼= PGL(2, q2) : 2. If g ∈ G is not a root element then |gG| > q9, and (2.3)
yields μ(g,G/M) < q2(q2 + 1)/q9 < 1/q4. If g is a root element then |gG ∩ M|/|gG| =
2(q2 − 1)/(q4 − 1)(q3 + 1) < 1/q4.

Case 3b. |g| divides q , and g acts nontrivially on both U1 and U2. Then |gM | � (q2 − 1)2 while
|gG| > q9 once again. Then |gG ∩ M|/|gG| < q4/q9 < 1/q4.

Case 4. g interchanges U1 and U2, q odd. In particular, g2 is central and so is ±1.
We first count the number of conjugates of g in M which do not fix U1. All such elements are

conjugate in O−(4, q) � Z/2 and so the number of such is at most |O−(4, q)| = 2q2(q2 − 1)2 <

2q6.
The number of conjugates of g in M that fix both U1 and U2 can be estimated as above. If

g2 = 1, then there are fewer than q8 such conjugates of g ∈ M , whence |gG ∩ M| < q9. Since
CG(g) � O+(4, q) × O+(4, q), |gG ∩ M|/|gG| < 2q9/q16, whence the result holds.

If g2 = −1, then no conjugate of g can fix U1 (for either 4 | (q − 1) in which case each
eigenspace is totally singular and so must be 2-dimensional and U1 has no such subspaces or 4
does not divide q −1 in which case U1 would be the sum of two irreducible g-submodules which
would either be totally singular or of − type; an impossibility). So in this case |gG ∩ M| < 2q6

while |CG(g)| � |GL(4, q)| < q16 and again the result follows.

Case 5. g interchanges U1 and U2, q even. Thus, g is an involution and CV (g) is a totally singular
4-space (i.e., if u,v ∈ U1 then (u + ug, v + vg) = (u, v) + (ug, vg) + (u, vg) + (ug, v) = 0 + 0).
Then (with respect to a hyperbolic basis of V ) g is conjugate to a matrix (

I
O

A
I
) for a nonsingular

skew-symmetric 4 × 4 matrix A. A simple calculation shows that CG(g) is a group of the form
q6Sp(4, q), so that |CG(g)| < q6q6(q4 − 1). Also, |CM(g)| � |�−(4, q)|2 = 2q2(q4 − 1).

We claim that g cannot fix U1—for any involution fixing U1 does not have a totally singular
fixed space. Thus, as in the previous case |gG ∩ M| � |O−(4, q)| < 2q6 while |gG| � q12/2.

Case 6. g has order 2 modulo Z(G). q is odd and g fixes U1. We may assume by Case 4 that no
conjugate of g interchanges U1 and U2. Arguing as above, we also see that g2 = 1 in the linear
group.

By replacing g by −g if necessary, we may assume that the fixed space of g is either 4-
dimensional or 6-dimensional. In the first case, the centralizer of g is contained in the stabilizer of
a nondegenerate 4-space and this gives a lower bound on |gG|. Bounding |gG ∩M| by the number
of involutions in the stabilizer of U1 gives the result. In the second case, dimCU1(g) = 2,3 or 4
(and dimCU2(g) = 6 − dimCU1(g)). An easy computation shows that |gG ∩ M| is on the order
of q6, while |gG| is approximately q12.

Case 7. |g| = 2, q is even and g fixes U1. This is done essentially as in the previous case.
Again, we may assume that no conjugate of g interchanges the Ui . Again, the fixed space of g
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is has dimension 4 or 6. In the first case, one bounds |gG ∩ M| by the number of involutions in
O−(4, q) × O−(4, q) to see that the result holds. In the second case, |gG| is approximately q12.
The number of conjugates of g in M that are trivial on one of the Ui is at most q4 while the
number that are nontrivial on each Ui is approximately q6, whence the result follows. �
3.3. SL(d, q) for prime d

Lemma 3.8. Let G = SL(d, q) with d � 5 prime, and let M be the normalizer of an irreducible
torus T . Then μ(g,G/M) < q−d whenever g ∈ G \ Z(G).

Proof. We have |T | = (qd − 1)/(q − 1) and |M/T | = d . We may assume that gZ(G) has prime
order and that g ∈ M (if g is not conjugate to an element of M , then g has no fixed points on
G/M).

If g ∈ M \T then gZ(G) has order d . If also d | q , then there is a regular unipotent element in
gZ(G) and so |CG(g)| � qd−1(q − 1) < qd . If not, then the minimal polynomial of g is xd − a

for some nonzero scalar a, so g is a regular semisimple element. Thus either g acts irreducibly
and so its centralizer is a conjugate of T , or g is diagonalizable with distinct eigenvalues. In
either case, its centralizer (even in GL(d, q)) has order less than qd . Thus μ(g,G/M) = |gG ∩
M|/|gG| < |M||CG(g)|/|G| < d(qd − 1)qd/|G| < q−d .

The remaining case to consider is when g is in T \ Z(G) and is not conjugate to an element
in M \ T . Then |gG ∩ M| < |T | = (qd − 1)/(q − 1). Since d is prime, every element of T either
is in Z(G) or acts irreducibly (since there are no subfields properly between Fq and Fqd ). In
particular, T = CG(g) for any such g, so that μ(g,G/M) < |T |qd/|G| < q−d . �
3.4. An action of �−(10,4)

Let G = �−(10,4) and let H be the maximal subgroup GU(5,4) embedded naturally. We
need an upper bound for the fixed point ratios of this action. Our vector space V is also unitary
over F16. Note that, for any F16-subspace W , the subspace W⊥ is the same computed using
the unitary or the orthogonal structure of V . In particular, the radical of W is the same for both
structures.

Lemma 3.9. If 1 �= g ∈ G then μ(g,G/H) � 1/64.

Proof. We may assume that g ∈ H has prime order r = 2,3,5,13,17, or 41.
If r = 41 then g is irreducible, and its centralizer in H is a Singer cycle of order 45 + 1. So

μ(g,G/H) < |H |/|gG| = 1025|H |/|G| < 1/64. (N.B.—By Lemma 2.12, g has a unique fixed
point.)

If r = 13 or 17 then g has an eigenvalue 1 and its fixed space is a nondegenerate 2k-space over
F4 of some type ε. Viewing g in the unitary group, we see that its fixed space is nondegenerate
of dimension k over F16. Thus,

μ(g,G/H) = ∣∣gG ∩ H
∣∣ / ∣∣gG

∣∣ � N(k,H)/N(2k, ε,G),

where N(k,H) is the number of nondegenerate k-spaces when V is viewed as a 5-dimensional
unitary space, and N(2k, ε,G) is the number of nondegenerate 2k-spaces of V of type ε. It is
straightforward to see that this ratio is smallest when k = 1 and ε = −. One computes in that
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case that N(1,H) = 44(44 − 1) and N(2,−,G) = 48(45 + 1)(44 − 1)/2 so the ratio is less than
1/64.

When r = 3 we claim that any element h ∈ H of order 3 has 1 as an eigenvalue. For h and
h−1 are conjugate and so the 1-eigenspace of h is odd-dimensional (on the unitary space) and in
particular is nontrivial. So the argument in the preceding paragraph applies here as well.

Now suppose that r = 5. If g has a nontrivial fixed vector, we argue as above. If the minimal
polynomial of g (over F4) has degree larger than 2, then the kernel of some (irreducible) quadratic
factor applied to g will be a canonical invariant nondegenerate space and the above argument
applies. The remaining case is when the minimal polynomial of g has degree 2 (and so is either
1 or 2 over F16). Choose x ∈ Z(H) of order 5. One of the eigenvalues of g (over F16) has odd
multiplicity and replacing g by a power, we may assume that this eigenvalue is equal to the
unique eigenvalue of x. It follows from Proposition 2.11 that g and x are conjugate in G. So we
see that gG ∩ H is a union of three H -conjugacy classes with centralizers H , GU(5,4) × Z/5
and GU(3,4) × GU(2,4). On the other hand, CG(g) is conjugate to H . An easy computation
now shows that |xG| > 419 while |gG ∩ H | < 413, whence |gG ∩ H |/|gG| < 4−6 as required.

Finally, assume that |g| = 2. In H , there are two conjugacy classes of involutions. and there is
no fusion—i.e. gG ∩ H is a conjugacy class of H . So the radical of the fixed space of g is either
1-dimensional (for a transvection) or 2-dimensional over F16.

Thus, as above,

μ(g,G/H) = ∣∣gG ∩ H
∣∣ / ∣∣gG

∣∣ � S(k,H)/S(2k,G),

where S(k,H) denotes the number of totally singular k-spaces in the unitary space and S(2k,H)

is the number of totally singular 2k-spaces in the orthogonal space (note k � 2). This ratio is
smallest for k = 1, where we compute that the ratio is (51 · 1025)/(7 · 51 · 257 · 1025) = 1/(7 ·
257) < 1/64. �
4. Computer calculations

In this section, we collect those computations that were done using the GAP system. These
cases cover the simple groups G in Table 1—for which we had to compute PG—as well as
the exceptions A5, A6, and �+(8,2) in Theorem 1.2 and Corollary 1.3—for which we had to
compute the exact (uniform) spread—and the exceptional cases with socle A6, �+(8,2), and
P�+(8,3) in Theorem 1.4.

Tables 2–5 list those classical groups for which we used explicit GAP computations. When
we deal with a classical group defined on a vector space, we may replace the simple group by

Table 2
Computations for Sp(d, q)

d q |s| M(G, s) σ (G, s) P (G, s)

4 4 17 �−(d, q).2, Sp(2,16).2 4/15
6 2 9 �−(d, q).2, Sp(d/3, q3).3,

Sp(d/3, q3).3, Sp(d/3, q3).3 4/7 4/7
6 3 28 NG(SU(d/2, q)), Sp(d/3, q3).3 1/117
6 4 65 �−(d, q).2, Sp(d/3, q3).3 16/63
8 2 17 �−(d, q).2, Sp(d/2, q2).2, PSL(2,17) 8/15 8/15
8 3 82 Sp(d/2, q2).2 1/546
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Table 3
Computations for �ε(d, q)

d and s q |s| M(G, s) σ (G, s) P (G, s)

8+ = 4− ⊥ 4− 2 15 Sp(6,2), 26 : A8, 26 : A8,
A9, A9, (3 × �−(6,2)).2,
(�−(4,2) × �−(4,2)).22 334/315 29/42

8+ = 4− ⊥ 4− 3 40 2.�(7,3), 2.�(7,3),
36 : 2.PSL(4,3),
36 : 2.PSL(4,3), SU(4,3).22,
2.(PSp(2,3) ⊗ PSp(4,3)).2,
2.(PSp(2,3) ⊗ PSp(4,3)).2,
2.(P�−(4,3) × P�−(4,3)).22 863/1820 194/455

8+ = 2− ⊥ 6− 4 65 (5 × �−(6,4)).2,
(5 × �−(6,4)).2,
(5 × �−(6,4)).2 � 3385/121 856

10+ = 4− ⊥ 6− 2 45 (�−(4,2) × �−(6,2)).2 43/4216
12+ = 4− ⊥ 8− 2 85 G8, �+(6,4).22, �+(6,4).22 7675/1 031 184
12+ = 4− ⊥ 8− 3 410 G8, �+(6,9).22, �+(6,9).22 � 6901/88 209

8− 2 17 �−(4,4).2 1/63
8− 3 41 �−(4,9).2 1/567
10− 2 33 GU(5,2) 1/119
10− 3 122 2 × SU(5,3) 1/1066
12− 2 65 �−(6,4).2, �−(4,8).3 1/1023
14− 2 129 GU(7,2) 1/2015

7 = 1 + 6− 3 14 �−(6,3).2, S9, S9 199/351 155/351

Table 4
Computations for SU(d, q)

d q |s| M(G, s) σ (G, s) P (G, s)

3 3 6 31+2+ : 8, GU(2,3) 16/63

3 5 30 3 × 51+2+ : 8, GU(2,5) 46/525
5 2 11 PSL(2,11) 1/54

4 2 9 GU(3,2), 33 : S4 3/5 2/5
4 3 28 42.PSL(3,4), 42.PSL(3,4), GU(3,3),

4.A7, 4.A7, 4.A7, 4.A7 53/135 43/135
4 4 65 GU(3,4) 209/3264
6 2 33 GU(5,2), 3.M22, 3.M22, 3.M22 5/21
6 3 244 GU(5,3) 353/3159
8 2 129 GU(7,2) 2753/10 880

the associated linear group, and hence deal with linear transformations s rather than elements in
the simple group. The first two columns of the tables list the dimension d (in Table 3, also the
type and the decomposition of the natural module under s is listed) and the size q of the defining
field (note that in the unitary case, the natural module is F

d
q2 ), the third column lists the order |s|

of the element s in the linear group, the fourth column lists the collectionM(G, s) of maximal
subgroups of G that contain s, and the last two columns list the quantities σ(G, s) and P(G, s)

(the latter only if the former is not smaller than 1/3).
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Table 5
Computations for SL(d, q)

d q |s| M(G, s) σ (G, s)

3 2 7 7 : 3 1/4
3 3 13 13 : 3 1/24
3 4 21 NG(SL(3,2)), NG(SL(3,2)), NG(SL(3,2)) 1/5
4 2 15 NG(SL(2,4)) 3/14
4 3 40 NG(SL(2,9)) 53/1053
4 4 85 NG(SL(2,16)) 1/108
6 2 63 NG(SL(3,4)), NG(SL(2,8)) 365/55 552
6 3 364 NG(SL(3,9)), NG(SL(2,27)) 22 843/123 845 436
6 4 1365 NG(SL(3,16)), NG(SL(2,64)) 1/85 932
6 5 3906 NG(SL(3,25)), NG(SL(2,125)) 1/484 220
8 2 255 NG(SL(4,4)) 1/7874

10 2 1023 NG(SL(5,4)), NG(SL(2,32)) 1/129 794

Table 6
Alternating groups of odd degree

n M(G, s) σ (G, s) P (G, s)

5 5 : 2 1/3 1/3
7 PSL(2,7), PSL(2,7) 2/5 2/5
9 P	L(2,8), P	L(2,8), P	L(2,8),

(S3 � S3) ∩ A9 9/35
11 M11, M11 2/105
13 13 : 6, PSL(3,3), PSL(3,3), PSL(3,3),

PSL(3,3) 4/1155
15 (S3 � S5) ∩ A15, (S3 � S5) ∩ A15,

PSL(4,2), PSL(4,2) 29/273
17 P	L(2,16), P	L(2,16) 2/135 135
19 19 : 9 1/6 098 892 800
21 (S3 � S7) ∩ A21, (S7 � S3) ∩ A21,

PGL(3,4), PGL(3,4) 29/285
23 M23, M23 2/130 945 815

Tables 6 and 7 deal with alternating groups and sporadic groups. Table 8 deals with small
almost simple classical groups. Table 9 deals with the 12 sporadic groups having nontrivial outer
automorphisms.

4.1. The exceptional case �+(8,2)

The simple group G = �+(8,2) behaves exceptionally. For Theorem 1.1 and thus also The-
orem 1.4, we computed PG = 29/42. To that end, we first excluded most of the candidates for
s with calculations involving only permutation characters, and then we considered P(g, s) for
the few remaining choices s and the necessary elements g. For Theorem 1.2 and Corollary 1.3,
we computed that G has uniform spread 2, with s of order 15, and that, for any triple (x, y, z)

of elements in the involution class of size 1575 such that xy = z, each element in G generates a
proper subgroup of G together with one of x, y, z.

However, G is not an exception in Corollary 1.5. By the above, this is clear for x, y ∈ G. The
extension G.3 of G by a triality automorphism causes no problem because 〈x, s〉 = G.3 holds for
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Table 7
Sporadic simple groups

G sG M(G, s) σ (G, s) P (G, s)

B 47A 47 : 23 < 1/1029

Co1 35A (A5 × J2) : 2, (A6 × PSU(3,3)) : 2,
(A6 × PSU(3,3)) : 2,
(A7 × PSL(2,7)) : 2 421/1 545 600

Co2 23A M23 1/270
Co3 21A PSU(3,5).S3, PSU(3,5).S3,

PSL(3,4).D12, S3 × PSL(2,8).3 64/6325
Fi22 16A 210 : M22, (2 × 21+8) : PSU(4,2) : 2,

2F4(2)′, 2F4(2)′, 2F4(2)′, 2F4(2)′,
25+8 : (S3 × A6) 43/585

Fi23 23A 211.M23, PSL(2,23) 2651/2 416 635
Fi′24 29A 29 : 14 1/269 631 216 855
He 14C 21+6.PSL(3,2), 72 : 2.PSL(2,7),

71+2 : (S3 × 3) 3/595
HN 19A PSU(3,8).31 4/34 375
HS 15A S8, 5 : 4 × A5 64/1155
J1 19A 19 : 6 1/77
J2 10C 21+4 : A5, A5 × D10, 52 : D12 5/28
J3 19A PSL(2,19), PSL(2,19) 2/153
J4 29A 29 : 28 1/1 647 124 116
Ly 37A 37 : 18 1/35 049 375
M 59A PSL(2,59) < 1/1024

M11 11A PSL(2,11) 1/3 1/3
M12 10A A6.22, A6.22, 2 × S5 1/3 31/99
M22 11A PSL(2,11) 1/21
M23 23A 23 : 11 1/8064
M24 21A PSL(3,4).S3, 26 : (PSL(3,2) × S3) 108/1265
McL 15A 31+4 : 2S5, 2.A8, 51+2 : 3 : 8 317/22 275
O ′N 31A PSL(2,31), PSL(2,31) 10/30 723
Ru 29A PSL(2,29) 1/2880
Suz 14A J2.2, J2.2, (A4 × PSL(3,4)) : 2 141/5720
T h 27A [39].2S4, 32.[37].2S4 2/267 995

each x ∈ G.3 \ G. In an extension of type G.2 ∼= SO+(8,2), there are two G-classes of elements
s of order 15 such that each x ∈ G.2 \ G satisfies 〈x, s〉 = G.2, whereas for s chosen in the third
G-class of elements of order 15, each element x in the involution class of size 120 in G.2 \ G

together with s generates a proper subgroup of G.2. Since triality permutes the three G-classes
of element order 15 (and the subgroups of the type G.2 inside Aut(G)) transitively, we cannot
choose s from a prescribed conjugacy class of G; but for given elements x, y in groups of type
G.2 but outside G, we computed that there is always a G-class of elements of order 15 in which
each element s satisfies the condition of Corollary 1.5.

4.2. G = Sp(2m,q)

In each of the cases listed for G = Sp(2m,q) (Table 2), we chose s irreducible of order qm+1.
For Sp(6,2) and Sp(8,2), we computed that part (c) (and for the latter group also part (b)) of
Proposition 5.8 hold.
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4.3. G = �ε(d, q)

Table 3 lists the examples computed for orthogonal groups. For G = �−(2m,q), we chose s

irreducible of order (qm + 1)/gcd(2, q − 1), and for G = �+(2m,q) and �(2m + 1, q), several
types of reducible elements (stated in the first column) were used.

The case G = �+(8,2) has been described in Section 4.1. When G = �(7,3) or �+(8,3),
we computed PG in the same way. We also computed that the two groups have uniform spread
at least 3.

4.4. G = SU(d, q)

In each of the cases listed for G = SU(2m,q) (Table 4, lower part), we chose s of type
1 ⊥ 2m − 1 and of order q2m−1 + 1 (for SU(2m,q) in general, see Proposition 5.22). For the
three cases listed for G = SU(2m + 1, q) (Table 4, upper part), the irreducible element of order
(q2m+1 + 1)/(q + 1) used in Proposition 5.21 was chosen only for SU(5,2); for SU(3,3) and
SU(3,5), the chosen elements of order 6 and 30, respectively, yield better bounds. (N.B.—Each
of these elements is a product of a commuting involution and transvection.)

The only unitary groups G in the table for which computing σ(G, s) is not sufficient are
PSU(4,3) and SU(4,2) ∼= PSp(4,3). In the former case, σ(g, s) < 1/3 except if g ∈ G is an
involution, so it suffices to compute P(g, s) for this choice. In the latter case—which is one of
the exceptions in Theorem 1.1—we computed that PG = 2/5 and that the uniform spread of G

is at least 3.

4.5. G = SL(d, q)

In each of the cases listed for G = SL(d, q) (Table 5), we chose s irreducible of order (qd −
1)/(q − 1), and computed σ(G, s) either from the full list of primitive permutation characters of
G or from the ratios |gG ∩ M|/|gG|, for M ∈M(G, s) and conjugacy class representatives g of
prime order.

4.6. G = An

Table 6 lists the character-theoretic results for small alternating groups of odd degree n, where
s is an n-cycle in each case. The sets M(G, s) are obtained from GAP’s library of transitive
groups; the computation of the relevant permutation character values from the natural permuta-
tion representation of An is straightforward.

For the groups A5, A6, and A7, we computed the values PG stated in Table 1.
When G = A6 take s ∈ G of order 4. We calculated that, for each pair of nonidentity elements

x, y ∈ G, there exists g ∈ G such that 〈x, sg〉 = 〈y, sg〉 = G. (Note that PG = 5/9 is attained
only for s of order 5, but this choice is not suitable for showing that the spread of A6 is 2: just
choose disjoint 3-cycles x, y.)

The fact that G = A5 and A6 are exceptions in Theorem 1.2 (which is mentioned already
in [6]) follows by showing that any element of G generates a proper subgroup of G with one
of (1,2)(3,4), (1,3)(2,4), (1,4)(2,3). For G = A7, we calculated that the uniform spread is
exactly 3, with s of order 7.
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4.7. Sporadic simple groups

Table 7 lists the results for the sporadic simple groups. For all except the Baby Monster and
the Monster,M(G, s) and σ(G, s) are computed using the complete lists of character tables of
maximal subgroups in GAP; for the Baby Monster or the Monster, the statement aboutM(G, s)

follows from [31] and [21], respectively. The notation for the subgroups follows [11]. In [13],
essentially the same approach was taken, but the bounds in Table 7 are better for 12 groups (and
the bound stated for HN in [13] is incorrect).

For G = M11 or M12 and s ∈ G as in Table 7, σ(g, s) = 1/3 holds exactly for involutions
g ∈ G; for all other g �= 1, the value is less than 1/3. Thus, considering involutions suffices to
show that P(G, s) < 1/3 in the case G = M12, and to show that G = M11 has uniform spread at
least 3.

4.8. Almost simple groups

Let S be a finite simple group. We say that G is an automorphic extension of S if S � G �
Aut(S). Tables 8 and 9 list automorphic extensions G of simple groups S by elements of prime
order, for classical and sporadic simple groups, respectively.

We do not list the cases where S = Aut(S). We also do not list the cases where M(S, s)

consists of a single element (for then we can apply Lemma 2.6). The names of the automorphic
extensions in Table 8 follow [11]. The case of the simple group S = �+(8,2) is a bit subtle. The
group S contains three conjugacy classes of elements of order 15. In each of the three subgroups
of the type S.2 in Aut(S) ∼= S.S3, one of these three classes is invariant, and the other two classes
are fused, such that each of the three classes is invariant in exactly one subgroup S.2 in Aut(S).
We choose an element s of order 15 in S. Then we denote by �+(8,2).2 the S.2 subgroup of
Aut(S) that fixes the class sS , and by �+(8,2).2′ one of the other two S.2 subgroups of Aut(S).
A similar situation occurs for �+(8,3); for this group, we give the information for the simple
group S = P�+(8,3) not the matrix group �+(8,3), because not all outer automorphisms of
S act on the latter. For G in Table 8 such that S = F ∗(G) admits more than one automorphic
extension of prime index p then p = 2 holds, and there are exactly three different such automor-
phic extensions, which are called S.21, S.22, and S.23. If these names are not in [11] then S.21
describes the extension of S by a graph automorphism, and S.22 describes the extension by a
diagonal or field automorphism. (There is no case in the table where both a diagonal and a field
automorphism of order two occurs.)

Recall thatM′(G, s) was defined in Section 2.2. If each element ofM′(G, s) intersects S in a
maximal subgroup of S, the corresponding line in Table 8 or 9 contains the string “(extensions)”
instead of listingM′(G, s). (The last two columns in Table 9 are needed only for the confirmation
that the spread of the automorphism groups of sporadic simple groups is at least two.)

In the character-theoretic considerations, we computed

σ ′(G, s) := max
{
σ(g, s)

∣∣ g ∈ G \ S, |g| is prime
}
,

so that P ′(g, s) � max{σ(S, s), σ ′(G, s)} for all 1 �= g ∈ G.
Where these bounds on P ′(g, s) were not sufficient, we computed

P ′(G, s) := max
{
P ′(g, s)

∣∣ g ∈ G \ S, |g| is prime
}
,
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Table 8
Automorphic extensions of classical groups

G |s| M(G, s)′ σ ′(G, s) P ′(G, s)

Sp(4,4).2 17 (extensions) 0
Sp(6,3).2 28 (extensions) 7/3240
Sp(6,4).2 65 (extensions) 0

�+(8,2).2 15 (extensions) 1
�+(8,2).2′ 15 0
�+(8,2).3 15 0
P�+(8,3).21 20 (extensions) 574/1215
P�+(8,3).2′

1 20 PSL(4,3).22, 36 : PSL(4,3).2,
36 : PSL(4,3).2,
2.PSU(4,3).[23], (A6 × A6) : [23] 83/567

P�+(8,3).22 20 (extensions) 1
P�+(8,3).2′′

2 20 0
P�+(8,3).3 20 0
�+(8,4).21 65 (5 × �−(6,4)).2.2 < 1/2
�+(8,4).22 65 (extensions) 0
�+(8,4).23 65 (5 × �−(6,4)).2.2 < 1/2
�+(8,4).3 65 (5 × GU(3,4)).2 < 1/2

�−(12,2).2 65 (extensions) 1/347 820

�(7,3).2 14 GO−(6,3) 1/3

SU(3,3).2 6 (extensions) 2/7
SU(3,5).2 30 (extensions) 2/21
SU(3,5).3 30 (extensions) 46/525
SU(4,2).2 9 (extensions) 7/20
SU(4,3).21 7 42.PSL(3,4).22, 42.PSL(3,4).22,

4 × PSU(3,3) × 2 76/135 13/27
SU(4,3).22 7 (4 × PSU(3,3)) : 2, 2.(2 × S7),

2.(2 × S7) 1/3
SU(4,3).23 7 42.PSL(3,4) : 23, 42.PSL(3,4) : 21,

(4 × PSU(3,3)) : 2 31/162
SU(6,2).2 33 GU(5,2).2, 3.M22.2 5/96
SU(6,2).3 33 GU(5,2) × 3 59/224

SL(3,4).21 21 (extensions) 3/10
SL(3,4).22 21 PSL(3,2) × S3 11/60
SL(3,4).23 21 (PSL(3,2) × 3).2 1/12
SL(3,4).3 21 (9 × 7) : 3 1/64
SL(6,2).2 63 (extensions) 41/1984
SL(6,3).21 364 (extensions) 541/352 836
SL(6,3).22 364 (extensions) 41/882 090
SL(6,3).23 364 (extensions) 25/352 836
SL(6,4).21 1365 (extensions) < 10−5

SL(6,4).22 1365 (extensions) 1/34 467 840
SL(6,4).23 1365 (extensions) 1/10 792 960
SL(6,4).3 1365 (extensions) 1/87 296
SL(6,5).21 3906 (extensions) < 10−4

SL(6,5).22 3906 (extensions) < 10−5

SL(6,5).23 3906 (extensions) < 10−6

SL(10,2).2 1023 (extensions) < 10−5
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Table 9
Automorphism groups of sporadic simple groups

G sG M(G, s)′ σ ′(G, s) ŝG σ(G, ŝ)

F i22.2 16AB (extensions) 251/3861 42A 163/1170
Fi′24.2 29AB (extensions) 0 46A 566/5481
HN.2 19AB (extensions) 1/6875 44A 997/192 375
HS.2 15A (extensions) 36/275 30A 36/275
He.2 14CD (extensions) 37/9520 42A 1/119
J2.2 10CD (extensions) 1/15 14A 1/15
J3.2 19AB 19 : 18 1/1080 34A 77/10 260
M12.2 10A (22 × A5) : 2 4/99 12B 113/495
M22.2 11AB (extensions) 1/21 10A 8/33
McL.2 15AB (extensions) 1/63 22A 1/135
O ′N.2 31AB 31 : 30 1/84 672 38A 61/109 368
Suz.2 14A (extensions) 661/46 332 28A 1/351

so that P ′(g, s) � max{P(S, s),P ′(G, s)} for all 1 �= g ∈ G.
We conclude with remarks concerning some special cases.
�+(8,2) has been described in Section 4.1.
G = P�+(8,3) behaves similar to this group, in the following sense. For an extension of type

G.22 by an involution outside the derived subgroup of Aut(G)/G ∼= S4, the element s cannot be
chosen from a prescribed conjugacy class of G but from an Aut(G)-class of elements of order 20.
For each element s in G, there is an extension G.22 such that s and any g in the outer involution
class of size 1080 generate a proper subgroup of G.22.

For A6, proportions of nongeneration do not help us. In fact, A6 really is an exception in
Corollary 1.5.

We computed that the three groups �+(8,2), P�+(8,3) and A6 are not exceptions in Corol-
lary 1.5, and that the automorphic extensions PGL(2,9) and M10 of A6 satisfy σ(PGL(2,9), s) =
1/6 and σ(M10, s) = 1/9, with s of order 10 and 8, respectively.

For each sporadic simple group S with full automorphism group G > S, the setM(G, s) is
determined using thatM(S, s) is known (see Table 7), and using the information in [11]. Then
σ ′(G, s) is computed either from the character tables of the maximal subgroups in GAP or, if
applicable, by extending the known permutation characters of S to G (cf. [9]). We similarly
compute σ(G, ŝ) for an element ŝ in the nontrivial coset of S. This shows that each of the 12
almost simple groups that are not simple has spread at least four (and much larger in most cases).

5. Classical groups

We now begin the proofs of Theorems 1.1 and 1.2. The latter theorem is clear unless G is
one of the exceptional cases in the former one, and these exceptions have been discussed in [20]
and in Section 4. We will also prove Theorem 1.4 and Corollary 1.5. Typically, the proofs for the
almost simple groups are identical to the proofs for the simple groups.

In this section we will deal with the case of a classical group G defined on a vector space V

of dimension d over F = Fq or Fq2 . As noted earlier, here we consider the corresponding linear
group G and linear transformations s.

We need to find an element s such that P(g, s) < 1/3 for all nonscalar g ∈ G. For this pur-
pose we choose s such that |M(G, s)| is small (preferably 1). If G contains irreducible cyclic
subgroups then it might be reasonable to choose s to generate such a subgroup, so thatM(G, s)
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consists in almost all cases of groups of extension field type (see [2]). Often, however, a re-
ducible s of carefully chosen shape appears to be easier for our purposes: |M(G, s)| is smaller.
Thus, our philosophy in choosing s is not necessarily to pick an “obvious” element but instead
to pick one that will have an “easily” handled collection of maximal overgroups. Consequently,
our main difficulty is to (try to) avoid the aforementioned extension field groups (including the
case of unitary subgroups of orthogonal or symplectic groups), since the number of them need
not even be bounded. However, in some cases, we use irreducible elements even for unbounded
dimension and deal with the fact thatM(s) is large.

The element s will be described using |s| and the degrees and structures of its irreducible
constituents. For example, s : 4− ⊥ (2m − 4)− means that s decomposes the 2m-dimensional
space into the sum of two orthogonal irreducible subspaces (of minus type) of dimensions 4 and
2m − 4, respectively. In the descriptions of the maximal subgroups containing s, for example
G4 denotes the stabilizer of a 4-space implicit in the description of s; and similarly for other
subscripts.

5.1. Primitive prime divisors

In the discussion of a group of dimension d defined over Fq (recall that the natural module is
defined over Fq2 in the unitary case), with q = pk for a prime p, we usually choose s of order
divisible by a primitive prime divisor of pke − 1 w.r.t. p (see [19,32]), with e > d/2. Then we
can apply the classification in [19], which provides a list of those subgroups containing s that
belong to one of the following nine classes:

(1) classical [19, Ex. 2.1],
(2) reducible [19, Ex. 2.2],
(3) imprimitive [19, Ex. 2.3],
(4) extension field type [19, Ex. 2.4],
(5) symplectic type [19, Ex. 2.5],
(6) alternating or symmetric (on the heart of the permutation module) [19, Ex. 2.6],
(7) sporadic [19, Ex. 2.7],
(8) Lie type in the same characteristic p [19, Ex. 2.8], and
(9) Lie type in different characteristic [19, Ex. 2.9].

The element s will also have very large order (typically on the order of magnitude qm where m

is the rank of the group). This will eliminate many of the small cases using upper bounds for the
order of elements in some of the cases (1)–(9) (see Remark 5.1): s will have order greater than
these upper bounds. Also, the element s we choose will have only a small number of invariant
subspaces.

As in most of this paper, we need to be careful for small fields and small dimensions.
We make a few remarks which the reader can use to verify our statements about M(G, s).

The natural families of subgroups occurring in the main result of [19] are classical subgroups,
subfield subgroups, extension field subgroups, reducible subgroups and imprimitive subgroups.
Aside from the latter case, it is quite easy to decide which such subgroups (if any) contain our
chosen element s. In particular, using Lemma 2.8, we can often rule out classical subgroups. We
now make some remarks about the other cases.
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Remark 5.1. (i) In [19, Ex. 2.3], s lies in a wreathed product GL(1, q) � Sd , and there is a prime
r � d that divides |s| but not q − 1. We typically choose our element s to have a small number c

of irreducible constituents (often just 2).
This forces s to have c cycles within Sd . It follows that the order of s is less than (q −1)(d/c)c

(strictly less comes from noting that one cycle must have size greater than d/2).
(ii) Similarly, in [19, Ex. 2.6(a)], s ∈ Sn ×Z for d +1 � n � d +2 and Z cyclic of order q −1,

and there is a prime r � n � d + 2 that divides |s| but not q − 1. Note that Sn × Z is (modulo
scalars) self-dual and defined over the prime field. So this case only arises for certain orthogonal
and symplectic groups over the prime field. Note that if s corresponds to a permutation with c

cycles, then it have will have at least 2c − 2 distinct minimal invariant subspaces and will have
an eigenspace of dimension c − 2. As in the previous case, in essentially every case this forces
c � 2, and so s has order less than n2/4 (modulo scalars).

(iii) In [19, Ex. 2.4(a), Ex. 2.5, Ex. 2.6(b)–(c), Ex. 2.7, Ex. 2.8, and Ex. 2.9], the dimension
e of the maximal irreducible subspace of the d-dimensional natural module satisfies e � d − 3
or e = d − 3 is even. Moreover, the centralizer of the element of prime order r in the maximal
subgroup typically has small order, certainly much smaller than qm.

Remark 5.2. In order to keep |M(G, s)| small we often try to choose a reducible element s

having invariant subspaces whose dimensions are relatively prime or almost relatively prime.
If this is not possible, then we can still avoid some obstacles by using the fact that orthogonal
groups do not contain elements acting irreducibly on nondegenerate subspaces of odd dimension
greater than 1 (Lemma 2.8).

5.2. The exceptional case Sp(2m,2)

We first deal with G = Sp(2m,2),m > 2, since this family is an anomaly, as indicated in The-
orem 1.1. Note that the outer automorphism group is trivial. We begin with a simple observation
(where we will always assume that transvections are nontrivial):

Lemma 5.3. Let G = Sp(2m,q) with q even.

(a) The number of transvections in Sp(2m,q) is q2m − 1.
(b) The number of transvections in Oε(2m,q) is q2m−1 − εqm−1.
(c) The probability that a transvection of G lies in Oε(2m,q) is [1 − ε/(qm + ε)]/q .

We use this to prove that Sp(2m,2) does, indeed, provide exceptional situations in Theo-
rem 1.1:

Proposition 5.4. Let G = Sp(2m,2),m � 3. Let g ∈ G be a transvection and s ∈ G. Set PG(g)

to be the minimum of P(g, s) for s ∈ G. Then 1/2 < PG(g) � 2m−1/(2m − 1).

Proof. By [22], the only possible maximal subgroup containing a transvection g and an ir-
reducible element h of order 2m + 1 is O−(2m,2). Thus, the preceding lemma implies that
P(h,g) = 2m−1/(2m − 1).

It remains to show that P(g, s) > 1/2 for any s ∈ G.
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Any element s of G lies in an orthogonal subgroup O±(2m,2) (this is well known and easy;
cf. [28, Lemma 4.1]). If s ∈ O−(2m,2) then P(s, g) is at least the probability that a transvection
lies in O−(2m,2), which is 2m−1/(2m − 1) by the preceding lemma.

It remains to consider the case in which s lies in an orthogonal group O+(2m,2). Then s is
reducible. If m = 3, this is easily computed by a computer calculation. So we assume that m > 3.

Case 1. s leaves invariant a nondegenerate subspace of dimension d � m. Then s is in the
stabilizer Xd of this d-dimensional space and so is also in some orthogonal group O on V for
which this d-dimensional space is nondegenerate. We may assume that O ∼= O+(2m,2).

Whether the d-dimensional space is of + or − type, the total number of transvections in
Xd ∪ O is at least

(
2d − 1 + 22m−d − 1

) + (
22m−1 − 2m−1)

− (
2d−1 + 2d/2−1 + 22m−d−1 + 2m−d/2−1) >

(
22m − 1

)
/2.

(The first two terms count the number of transvections in Xd , the next two count the number
in O , and the subtracted terms estimate the number in Xd ∩ O .)

Each of these transvections does not generate G together with s, as required.

Case 2. s leaves invariant no proper nondegenerate subspace. Then s also leaves invariant no
proper nondegenerate subspace with respect to our chosen orthogonal group O containing s.
Consequently, a nonzero s-invariant subspace W of minimal dimension is either totally singular
or a nonsingular 1-space for O .

We claim that W can be chosen to be totally singular for O and hence also for G. This is
clear if s is unipotent, since then it fixes some nonzero singular vector. If s is not unipotent and
W is 1-dimensional then s is 1 on W . Moreover, s leaves invariant the nondegenerate subspace
[h,V ], where h is the semisimple part of s. Then [h,V ] is a nondegenerate subspace of V not
containing W , which contradicts the situation in Case 2.

Thus, s must leave invariant some totally singular subspace for both O and G of dimension
d � m. Let Xd be the stabilizer in G of this d-dimensional totally singular subspace. Since O has
type +, the same is true for a Levi factor of (Xd ∩O)/O2(Xd ∩O). The number of transvections
in Xd ∪ O is at least

(
22m−1 − 2m−1) + (

2d − 1
) + ζ � 22m−1 + 2m−1 − 1,

where ζ is 0 if d = m and 2d{(22m−2d − 1) − (22m−2d−1 − 2m−d−1)} otherwise. (Here the first
two terms count the number of transvections in O , the next two count the number of transvections
in O2(Xd), none of which are in O , and ζ counts the number of transvections in Xd \ O2(Xd)

not in O . Note that the last two terms in ζ correspond to O+(2m − 2d,2) when m − d > 0.)
Each of these transvections does not generate G together with s, as required. �

Remark 5.5. It has been shown in [20, Prop. 2.5] that the spread of Sp(2m,2), m � 2, is at
most 2. Thus, these groups are really exceptions in Theorem 1.2.
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5.3. The exceptional case �(2m + 1,3), for even m

The family G = �(2m+ 1,3), for even m, is the second anomaly in Theorem 1.1. If we view
Sp(2m,2) as �(2m + 1,2), then the two exceptional infinite series concern odd-dimensional
orthogonal groups, and [20, Section 3.2] already shows that the spread for these groups behaves
differently than for other groups of Lie type.

As in the previous section, we begin with some simple observations. The following result will
be used also for odd m (see Proposition 5.19), so m will be an arbitrary positive integer.

Lemma 5.6. Let q denote the underlying quadratic form on the natural module V of G. We may
fix Q = diag(−1,1,1, . . . ,1) as the matrix of q , i.e., q(v) = vQvtr holds for all v ∈ V .

(a) G acts transitively on the 1-dimensional subspaces 〈v〉 of fixed norm q(v). The orbit
for q(v) = 0 has length (32m − 1)/2, and the orbit for q(v) = ±1 has length 3m(3m −
(−1)mq(v))/2.

(b) If q(v) = ±1 then 〈v〉⊥ contains 3m−1(3m + (−1)mq(v))/2 nonsingular 1-spaces of each of
the norms ±1, and (32m−1 − 2(−1)mq(v)3m−1 − 1)/2 singular 1-spaces.

(c) G has exactly five orbits on the subspaces of codimension 2 in V . For even m, the number
of 1-spaces of norm 1 in each such subspace is 3m−1(3m−1 ± 1)/2 or 3m(3m−2 − 1)/2.
For odd m, the number of singular 1-spaces in each such subspace is (32m−2 − 1)/2 or
(32m−2 ± 3m−12 − 1)/2.

(d) Let U be a quadratic space over a finite field F of odd characteristic such that U/ rad(U) is
of − type. Then U contains more than |U |/|F | singular vectors.

We now turn to the exceptional nature of these groups in Theorem 1.1. Part (d) of the next
result states that these groups are, indeed, exceptional.

Proposition 5.7. Assume that m � 4 is even. Let g ∈ G with −g a reflection in GO(2m + 1,3),
and let s ∈ G have type s : 1 ⊥ 2m− and order (3m + 1)/2. Then the following hold.

(a) M(G, s) = {M} with M = G2m− = NG(�−(2m,3)).
(b) P(g, s) = 1/3.
(c) If 1 �= h ∈ G \ gG then P(h, s) < 1/3.
(d) If 1 �= h ∈ G then P(g,h) � 1/3.
(e) For any triple of nonidentity elements (x, y, z) ∈ G, some s′ ∈ sG satisfies 〈x, s′〉 = 〈y, s′〉 =

〈z, s′〉 = G.

Proof. Let V , q , Q be as in Lemma 5.6, We may assume that g = −Q, and CV (g) is spanned by
vectors of norm −1. Let 0 �= v ∈ CV (s). The natural module for the subgroup �−(2m,3) of G

can be embedded into the subspace of V spanned by the first 2m basis vectors, since the matrix
of the quadratic form for �−(2m,3) can be chosen as diag(−1,1,1, . . . ,1) if m is even. (If m

is odd then the identity matrix can be chosen as the matrix of the quadratic form for �−(2m,3);
in this case, the natural module for the subgroup �−(2m,3) of G can be embedded into the
subspace of V spanned by the last 2m basis vectors.) So we have q(v) = 1.

Let W±(h) denote the eigenspace of h ∈ G for the eigenvalue ±1. Note that each h-invariant
1-space is either singular or lies in one of the subspaces W±(h). Let Û denote the set of 1-spaces
in any subspace U of V .
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(a) This follows from [26, Theorem 1.1] since m > 2 (cf. Proposition 5.20 below).
(b) If O = 〈v〉G, then G/M and O are equivalent as G-sets, and |O| = 3m(3m − 1)/2, by

Lemma 5.6(a).
Clearly dimW−(g) = 2m and dimW+(g) = 1. By Lemma 5.6(b), P(g, s)|O| = |FixO(g)| =

|Ŵ−(g) ∩O| + |Ŵ+(g) ∩O| = 3m−1(3m − 1)/2 + 0, which implies (b).
(c) Both W+(h) and W−(h) have codimension at least 2, while at least one of these

has dimension at most m. By Lemma 5.6(c), P(h, s)|O| = |Ŵ+(h) ∩ O| + |Ŵ−(h) ∩ O| �
(3m − 1)/2 + 3m−1(3m−1 + 1)/2 < |O|/3.

(d) Any h ∈ G fixes some 1-space U = 〈u〉, so that

P(g,h) = |{k ∈ G | 〈hk, g〉 < G}|
|G| � |{k ∈ G | Uk ⊆ W−(g)}|

|G|

= |Ŵ−(g) ∩ UG|
|UG| .

If q(u) = 1 then the right-hand side of this inequality is (3m−1(3m−1)/2)/(3m(3m−1)/2) = 1/3
(cf. part (b)); if q(u) = 0 then the right-hand side is (3m−1(3m + 2) − 1)/(32m − 1) > 1/3, by
Lemma 5.6(b).

The case q(u) = −1 is more delicate. Here, we claim that

∣∣{g′ ∈ gG
∣∣ 〈g′, h〉 is reducible

}∣∣ �
∣∣gG

∣∣/3,

which implies (d). Note that g′ �→ W+(g′) is a bijection from gG to the set of 1-spaces spanned
by vectors of norm −1.

W = 〈u〉⊥ is of + type and hence is 〈h〉-reducible (by Lemma 2.8). A minimal 〈h〉-invariant
subspace W0 of W is either nondegenerate or totally singular. In either case we will estimate the
number of g′ ∈ gG such that W+(g′) ⊆ W⊥

0 ∪ W ; the group 〈g′, h〉 is reducible for each such g′.
By Lemma 5.6(b), W contains 32m−1 − 3m−1 norm −1 vectors. We will estimate the number

of norm −1 vectors of the form ±u + y with y ∈ W⊥
0 ∩ W singular; clearly ±u + y ∈ W⊥

0 \ W

and different vectors y produce different conjugates g′.
If W0 is totally singular then it is contained in a totally singular m-space W̃ ⊆ W⊥

0 , and
±u + W̃ ⊆ W⊥

0 \ W consists of 2 · 3m norm −1 vectors.
Assume that W0 is nondegenerate of dimension k. By Lemma 2.8, either k = 1 or W0 is of −

type. If k = 1 then W⊥
0 ∩W is a nondegenerate 2m− 1-space and hence contains 32m−2 singular

vectors by Lemma 5.6. If W0 is of − type then W1 = W⊥
0 ∩ W is also of − type (since W is of

+ type), and W0 ∪ W1 contains 3k−1 + 32m−k−1 � 2 · 3m−1 singular vectors by Lemma 5.6.
In each case, we obtain at least 32m−1 − 3m−1 + 2 · 3m−1 = 2|gG|/3 vectors of norm −1 for

which the associated group 〈g′, h〉 is reducible, as claimed.
(e) By (b) and (c), it suffices to consider conjugates x, y, z of g. We will show that the sets

of fixed points of these three conjugates cannot cover O, since then some conjugate of s fixes a
point moved by each of the three given elements, and behaves as required. Since each conjugate
of g fixes exactly one third of the points in O, it is enough to show that any two conjugates x, y

of g fix a common point in O. This holds by Lemma 5.6(c), because the intersection of the −1
eigenspaces of x and y has codimension 2 in V and thus contains vectors of norm 1. �
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Remark. Since our choice of s has |M(G, s)| = 1, Proposition 2.6 implies that P ′(g, s) < 1/2
for any nontrivial g ∈ Aut(G), as required in Theorem 1.4.

5.4. G = Sp(2m,q), q even and m � 2

The next result is slightly more precise than Theorem 1.1 in this case:

Proposition 5.8. If G = Sp(2m,q) with q even and (m,q) �= (2,2), choose s irreducible of order
qm + 1. Then, whenever 1 �= g ∈ G,

(a) P(g, s) < 1/3 if q � 4;
(b) P(g, s) < 1/3 if q = 2, m > 3, and g is not a transvection; and
(c) if 1 �= x, y ∈ G then G = 〈s′, x〉 = 〈s′, y〉 for some s′ ∈ sG.

Proof. Given transvections x, y ∈ G in the case q = 2, by [20, proof of Proposition 3.5] we have
G = 〈x, s′〉 = 〈y, s′〉 for some s′ ∈ sG. Thus part (c) follows from (a), (b), and Proposition 5.4
(aside from the case Sp(6,2) which we check directly, see Section 4).

If (m,q) �= (4,2) then, by [2] and Lemma 2.12, the only maximal overgroups of s are a single
O−(2m,q) along with one subgroup Mb

∼= Sp(2m/b,qb).b for each prime b dividing m. (Note
that, for odd m, there is a unitary subgroup that contains an irreducible torus, but this subgroup
is not maximal as it is contained in O−(2m,q).) If g is a transvection then g is not contained in
any Mb , so (a) (for transvections) follows by Lemma 5.3. So it suffices to assume that g is not a
transvection in order to prove (a) and (b).

Case 1. m ∈ {2,3}. By Theorem 2.1, P(g, s) � 2(4/3q) < 1/3 if q > 8, or if q = 8 and g is
contained in exactly one member ofM(G, s). If q = 8 and g is contained in both members of
M(G, s) then we apply Lemma 2.3, with U = NG(O−(2m,q)) and H = Sp(2, qm), and get
σ(g, s) � 4/3q + 4/3qm + 1/[G : U ] < 1/3. If q � 4, we verify the result directly using GAP
(Table 2).

Note that Sp(6,2) contains elements g of order 3 (with fixed space of dimension 4) with
P(g, s) = 5/14 > 1/3, hence this group is really an exception in (b).

Case 2. m � 4. If m = 4 and q = 2, we verify (b) directly using GAP (Table 2). So assume that
q > 2 or m > 4.

In order to complete the proof of Proposition 5.8, as above we have to prove that (∗)
P(g, s) < 1/3 for any g ∈ G of prime order that is not a transvection. By [16, Lemma 3.18],
μ(g,G/O−(2m,q)) � 1/q2 + 1/qm, so we are done if g is not contained in any Mb.

Let B = max{b | g ∈ Mb}. If B = 2 then m is even and, by Lemma 3.4 and [16, Lemma 3.18],

P(g, s) �
{

(1/q2 + 1/qm) + 1/q2m−3 < 1/3 for m > 4,

(1/q2 + 1/q4) + 1/(q − 1)(q3 − 1) < 1/8 for m = 4

(since q � 4 when m = 4), as required.
Thus we may assume that B � 3. Now g ∈ Sp(2m/B,qB).B so that

μ
(
g,G/O−(2m,q)

) = μ
(
g,

[
Sp

(
2m/B,qB

)
.B

] / [
O−(

2m/B,qB
)
.B

])
< 1/qB + 1/qm
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by [16, Lemma 3.18] (cf. Lemma 3.5); alternatively, apply Lemma 2.3.
Lemma 3.4 yields μ(g,G/M2) � 1/q2m−3. We now apply Lemma 2.3 to conclude that

μ(g,G/MB) � 4/3qB + 1/[G : MB ] (using U = MB and H = 〈M ′
B,g〉) and μ(g,G/Mb) �

4/3qB for all odd b < B (using U = Mb and H = MB ). Also note that [G : MB ] > 2m2/2−m.
If B = 3 it follows that m � 6 and

P(g, s) �
(
1/qB + 1/qm

) + 1/q2m−3 + (
4/3qB + 1/[G : MB ])

� 1/23 + 1/26 + 1/29 + 1/6 + 1/212 < 1/3.

If B � 5 then there are at most B − 3 additional summands 4/3qB , since there are at most
B − 3 odd primes up to B . Hence, since m � 5,

P(g, s) �
(
1/qB + 1/qm

) + 1/q2m−3 + (
(B − 3)4/3qB + 1/[G : MB ])

� 1/25 + 1/25 + 1/27 + 8/
(
3 · 25) + 1/27 < 1/3.

This proves (∗). �
Remark. Theorem 1.1 for Sp(2m,2) now follows by the previous result and Proposition 5.4
(and the computations for the small cases). Now consider the almost simple case: Theorem 1.4.
If q = 2, then G = Aut(G) and there is nothing to do. In any case, no two members ofM(G, s)

are isomorphic, so we can compute fixed point ratios and the estimates above apply. The result
for Aut(Sp(4,4)) and Aut(Sp(6,4)) is verified using GAP (Table 8).

5.5. G = Sp(2m,q), q odd

Lemma 5.9. Let s ∈ U = Sp(m,q2).2 with s : 4 ⊥ (2m−4) and m > 2 even. Then s is contained
in precisely two G-conjugates of U .

Proof. The group U is defined over a quadratic extension E of F . The two s-invariant
F -subspaces X and Y of dimension 4 and 2m − 4 are E-spaces of dimension 2 and m − 2,
respectively. In their guise as E-spaces we will denote them XE and YE .

The eigenvalues of s are a and aq2
on XE and b, bq2

, . . . , bq2m−6
on YE , for some a, b in an

extension field L of E (each of these is a full set of Galois conjugates in L). Then the eigenvalues
of s are a, aq, aq2

, aq3
and b, bq, . . . , bq2m−5

on X and Y , respectively (this time these are full
sets of Galois conjugates in L as an extension field of F ). In particular, CG(s) is a maximal torus
of order (q2 + 1)(qm−2 + 1) and hence lies in U .

We claim that sG ∩ U splits into two U -classes. For, if s1 ∈ sG ∩ U then the eigenvalues of
s1 as an element of U are a Galois orbit of either a or aq together with a Galois orbit of either
b or bq . This provides us with four possibilities for the eigenvalues of s1 as an element of G.
Moreover, by Proposition 2.9 each of the four possibilities provided by a, aq and b, bq gives rise
to a U -class of sG ∩ U . Since the involutory field automorphism of L is also in U and fixes none
of the four eigenvalue possibilities, sG ∩ U consists of precisely two U -conjugacy classes.

Consequently, G has just two orbits on the pairs (s1,U1) ∈ sG × UG with s1 ∈ U1, so that
CG(s) � U has two orbits on the members of UG containing s, as required. �
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Proposition 5.10. If m � 5, let δ = gcd(2,m) and use s : 2δ ⊥ (2m − 2δ) of order lcm(qδ +
1, qm−δ + 1). Then M(G, s) = {G2m−2} if m is odd, and M(G, s) = {G2m−4,Sp(m,q2).2,

Sp(m,q2).2} if m is even. In both cases, σ(G, s) < 1/3.

Proof. Here |s| is divisible by a p-primitive prime divisor of qe − 1, where e = 2m − 2δ. Now
check [19, Ex. 2.1 to 2.9] to see that the only possible overgroups are conjugate in G to the ones
described.

In particular, when m is even the only proper irreducible overgroups are extension field groups
corresponding to quadratic extensions. By Lemma 5.9, there are exactly two possible extension
field overgroups of s, as asserted in the proposition.

We will estimate the fixed point ratios. By [16, Proposition 3.16],

μ(g,G/G2m−2δ) � 2/qm−2 + 1/qm + 1/qk/2 + 1/q2m−k < 1/3,

where k = 2m − 2 if m is odd and k = 4 if m is even. So the only remaining case is that m is
even and both g and s are contained in a subgroup U = Sp(m,q2).2. Then

σ(g, s) � μ(g,G/G2m−4) + 2μ
(
g,G/Sp

(
m,q2).2)

< 1/3

by Lemma 3.4. �
Remark. We now deal with the almost simple case (Theorem 1.4) using the same s as in the
proposition above. Let S be the socle of G = 〈S,g〉 with g of prime order. If m is odd, then
|M(S, s)| = 1, whence P ′(g, s) < 1/2 by Proposition 2.6.

Assume that m is even, and let J := 〈s〈g〉〉 as in Lemma 2.4. We will use a variant of the
following argument in several other instances and so we will give full details here. Let M1 be the
stabilizer of the 4-space fixed by s and let M2 and M3 denote the other two members ofM(S, s)

(see Proposition 5.10).

Lemma 5.11.

(a) M2 ∩ M3 � M1;
(b) if J < S, then g normalizes at least one of the Mi ; and
(c) P ′(g, s) �

∑3
i=1 μ(g,S/Mi) < 1/2.

Proof. (a) For j = 2,3, M ′
j is irreducible but not absolutely irreducible, and hence is CG(zj )

for some zj ∈ GL(2m,q). Clearly, 〈z2, z3〉 is not cyclic and so U := M ′
2 ∩ M ′

3 is reducible.
Moreover, s2 ∈ U and s2 has precisely two invariant subspaces (of distinct dimensions), and
hence so does U . Since M2 ∩ M3 normalizes U it preserves each of these subspaces, and hence
M2 ∩ M3 � M1.

(b) Clearly J � Mj for some j . Hence J = J g � Mj ∩ M
g
j . If M

g
j = Mj , then g normal-

izes Mj . If not, then M
g
j = Mi for some i �= j . The only possibility is that {i, j} = {2,3}. Thus,

J � M2 ∩ M3 � M1 and J = J g � M
g

1 , whence M
g

1 = M1.
(c) Now let x be any conjugate of g. By Lemma 2.4 〈s, x〉 = G if and only if 〈s〈g〉〉 = S. So

by (b), x fails to generate with s if and only if x normalizes one of the Mi—i.e. x has a fixed
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point on S/Mi for some i. Thus, P ′(g, s) �
∑

μ(g,S/Mi). The fact that this sum is less than
1/2 follows precisely as in the proof of Proposition 5.10. �

This proves Theorem 1.4 for S as in the preceding proposition. We now return to the proof of
Theorem 1.1.

Proposition 5.12. If 2 � m � 4 and (m,q) /∈ {(2,3), (3,5), (3,7)}, let s be irreducible of or-
der qm + 1. Then M(G, s) = {Sp(m,q2).2} if m ∈ {2,4} and M(G, s) = {NG(SU(3, q)),

Sp(2, q3).3} if m = 3. In each case, σ(G, s) < 1/3.

Proof. By [2, Main Theorem], every maximal subgroup containing s is of extension field type,
and there is only one group of each type by Lemma 2.12. (Note that, for m = 4, no subgroup of
type NG(SU(2, q)) occurs because the order of that group is not divisible by |s|.)

The claim concerning σ(G, s) follows from Theorem 2.1 when m ∈ {2,4} and q � 5, and
when m = 3 and q � 9. When G is Sp(6,3) or Sp(8,3), we use GAP to show that σ(G, s) < 1/3
(Table 2). �

The remaining cases of Theorem 1.1 for the groups Sp(2m,q) are Sp(2, q), Sp(4,3), Sp(6,5),
and Sp(6,7). The case Sp(2, q) ∼= SL(2, q) is handled below in Section 5.12, and PSp(4,3) ∼=
SU(4,2) is handled below in Section 5.11. For Sp(6,5) and Sp(6,7), we choose s : 2 ⊥ 4 of order
lcm(q + 1, q5 + 1); as in Proposition 5.10, we check [19, Ex. 2.1 to 2.9], and get M(G, s) =
{G2}, so Theorem 1.1 holds for these groups by Theorem 2.1.

Remark. The same argument applies to Theorem 1.4. Only Aut(Sp(6,3)) needs a computational
verification, see Table 8.

5.6. G = �+(2m,q),m > 4

Proposition 5.13. If m is odd, use s : (m − 1)− ⊥ (m + 1)− of order (q(m−1)/2 + 1)(q(m+1)/2 +
1)/gcd(4, q − 1). Then s is contained in a unique maximal overgroup, and σ(G, s) < 1/3.

Proof. If m > 5 or q > 2, the statement about M(G, s) follows from [19], and [16, Propo-
sition 3.16] (with k = m + 1 and l = (m − 1)/2) yields σ(G, s) � 2/qm−2 + 1/qm−1 +
1/ql + 1/q2m−k , which is less than 1/3. In the excluded case G = �+(10,2), we find that
M(G, s) = {(�−(4,2) × �−(6,2)).2} holds (for example, by [11, p. 146]), and then use GAP
(Table 3). �
Remark. Since |M(G, s)| = 1, Theorem 1.4 follows from Proposition 2.6.

Proposition 5.14. If m is even, use s : (m − 2)− ⊥ (m + 2)− of order (q(m−2)/2 + 1)(q(m+2)/2 +
1)/gcd(4, q − 1). Then M(G, s) consists of the reducible subgroup Gm+2 and precisely two
extension field groups of the form O+(m,q2).2. Moreover, P(g, s) < 1/3.

Proof. By [32] 〈s〉 contains an element of prime order acting irreducibly on a subspace of di-
mension m+2. Once again a list of possible overgroups is given in [19], and since m > 4 the only
possibilities are as stated. The assertion about the number of field extension subgroups containing
s is proved exactly as in Lemma 5.9 using Proposition 2.11.
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Now let g ∈ G \ Z(G). If g is not contained in one of the extension field groups, then
P(g, s) = μ(g,G/Gm+2) � 3/qm−2 + 1/qm−1 + 1/qm/2 [16, Proposition 3.16]. If m > 6 or
q > 2 then this is smaller than 1/3; the case �+(12,2) is handled with GAP (Table 3).

If g is contained in a field extension subgroup, then by Theorem 2.1, together with Lemma 2.3
(with U = O+(m,q2).2 and H = 〈gU 〉 = 〈gH 〉 � U , where c = 1), we have μ(g,G/U) �
4/3q2 +|O+(m,q2).2|/|G|. Now P(g, s) � 2μ(g,G/U)+μ(g,G/Gm+2), and this is less than
1/3 if either q � 5 or m � 8 and q � 3.

For G = �+(12,3), we use GAP to compute that μ(g,G/NG(�+(6,9))) � 2/88209. The
sum of twice this value and the above estimate for μ(g,G/Gm+2) is smaller than 1/3 (Table 3).

When q = 2 and m > 6, Lemma 3.5 implies that μ(g,G/O+(m,4).2) � 1/213. By [16,
Proposition 3.16], μ(G,G/Gm+2) < 1/8. Thus P(g, s) < 1/3 . �
Remark. In Theorem 1.4, consider the case G = 〈g,S〉 > S = �+(2m,q) with m � 6 even, and
choose s as in the proposition.

Let M(S, s) = {M1,M2,M3} with M1 reducible. Arguing as in the symplectic case
(Lemma 5.11), we see that M2 ∩ M3 � M1. Thus, 〈g, s〉 contains S if and only if g does not
normalize one of the Mi (cf. Lemma 5.11(b)). Now we argue precisely as in the simple group
case using the fixed point ratio estimates above.

The fixed point ratios are the same (with the same proof) for the almost simple group unless g

is a reflection (or transvection if q is even). However, in that case g is not in any extension field
group and so P ′(g, s) = μ(g,G/M1) < 1/2 (see [18] or [16]).

While the estimates given in the simple group case when S = �+(12,3) do not give the 1/3
upper bound for G, they do give the required 1/2 bound and hence we do not need computer
calculations in this case.

So all that remains to consider is when S = �+(12,2). In this case, we compute that the
two extension field subgroups are not conjugate in S but are conjugate in G. It follows that
M′(G, s) = {NG(M1)} (since M2 ∩ M3 � M1), and so P ′(g, s) < 1/2 as above.

5.7. G = �+(8, q)

Let G = �+(8, q) = �+(V ) and F = Fq . We deal with q � 4 using GAP computations (Sec-
tion 4, Tables 3 and 8).

Assume that q � 5. We will use regular semisimple elements. We will need to be somewhat
careful so as to avoid, in one situation, a problematic element of this sort.

Lemma 5.15. There is an element s of order (q2 +1)/gcd(2, q −1) such that the following hold.

(a) CG(s) is abelian.
(b) If q is not a square, thenM(G, s) consists of three subgroups, each with socle �−(4, q) ×

�−(4, q) modulo 〈−1〉.
(c) If q is a square, thenM(G, s) consists of the maximal subgroups in (b), together with the

normalizer of �−(8,
√

q).
(d) σ(G, s) < 1/3.
(e) The intersection of any two of the maximal subgroups in (b) is contained in the third.
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Proof. (a)–(c) Decompose V = U ⊥ U⊥ using 4−-spaces U,U⊥. We will choose s preserving
this decomposition, and having eigenvalues α,αq,αq2 = α−1, αq3 = α−q on U and β,βq,βq2 =
β−1, βq3 = β−q on U⊥, where α,β ∈ Fq4 have order dividing q2 +1. Namely, choose α of order

(q2 + 1)/gcd(2, q − 1) and β �= 1 of order dividing (q2 + 1)/gcd(2, q − 1) and not the image
of α under any automorphism of Fq4 . This is possible since we only have to exclude 1 + 4e

elements when we choose β (where q = pe), and this is less than |α| since q > 3. Then U and
U⊥ are not F [s]-isomorphic, so that these are the only proper s-invariant 4-spaces. Then CG(s)

leaves each of them invariant and hence is abelian on each of them. Moreover, each element of
G of order dividing (q2 + 1)/gcd(2, q − 1) lies in a conjugate of the maximal torus CG(s).

Note that, thus far all we have done is to observe that regular semisimple elements of order
(q2 + 1)/gcd(2, q − 1) exist.

Clearly s is contained in the stabilizer of {U,U⊥}. Triality sends this stabilizer to two further
maximal subgroups containing conjugates of s. Thus, s is contained in the maximal subgroups
listed in (b). The one in (c) is evident.

There are 75 conjugacy classes of maximal subgroups of (subgroups of Aut(G) containing)
G listed in [23]. A straightforward check of their orders shows that only the above ones have
order divisible by (q2 + 1)/gcd(2, q − 1), unless q = 5, s has order 13, and M = NG(Sz(8)).
We avoid this subgroup M by choosing s with slightly more care: if s′ ∈ M has order 13 and
agrees with s on U , then make a different choice of s �= s′. This simply adds one additional
choice of {β,βq,βq2

, βq3} we need to avoid, still leaving 13 − 1 − 2 · 4 possibilities for β .
(d) By Lemma 3.7, the subgroups in (b) contribute less than 3 · 8/q4 to σ(G, s). By Theo-

rem 2.1, for M in (c) we have μ(G,M) � 4/3q . Thus, σ(G, s) < 24/54 + 4/15 < 1/3.
(e) Let M1,M2 and M3 denote the three subgroups described in (b) with M1 reducible, and

M ′
i = [Mi,Mi]. Since s leaves precisely 2 invariant proper subspaces on the natural module, the

only reducible subgroups containing s are contained in M1. In particular, M ′
i acts irreducibly for

i > 1. Since M ′
i is a central product of two copies of SL(2, q2), it has no absolutely irreducible

modules of dimension 8 defined over Fq . Arguing as in Lemma 5.11(a) shows that M2 ∩ M3 �
M1, and applying triality yields (e). �
Remark. Once again consider Theorem 1.4. Let S = P�+(8, q) with q � 5, and consider G =
〈g,S〉 with g ∈ Aut(S) \ S of prime order. Let J = 〈s〈g〉〉 as in Lemma 2.4.

It follows as in Proposition 2.6 that, since no two elements of M(S, s) are S-conjugate,
|M′(G, s)| � |M(S, s)| � 4. Thus, by Theorem 2.1, P ′(s, g) � 4(4/3q) < 1/2 for q � 11.

So we may assume that q � 9 and hence no prime greater than 3 divides the order of the outer
automorphism group of S. In particular, |g| is 2 or 3.

Consider the case |g| = 3. If g does not preserve the S-conjugacy classes of the three iso-
morphic elements ofM(S, s), then |M′(G, s)| � 1 for q �= 9 and |M′(G, s)| � 2 for q = 9. By
Theorem 2.1, P ′(s, g) � 4/15 or 2(4/27), and hence P ′(s, g) < 1/2.

The remaining possibility is that q = 8 and g induces a field automorphism. By Theorem 2.1,
μ(g,G/M) < 1/6 for each M ∈M′(G, s). Note that NS(〈s〉) has order prime to 3 and that
〈gsg−1〉 is S-conjugate to 〈s〉. Thus, 3 divides |NG(〈s〉)|. In the particular, there is an element of
order 3 that normalizes s and is in gS. By Lang’s Theorem, any such element is conjugate to g.
In particular, gG ∩NG(M1)∩NG(M2)∩NG(M3) �= ∅, whence P ′(g, s) <

∑
μ(g,S/Mi) � 1/2

as required.
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Finally, suppose that g is involution. If g is a diagonal automorphism, the proof proceeds
precisely as in the simple group case. So we may assume that either g is a graph automorphism
or q = 9. If q = 7 or 8, then |M(G, s)| = 2 and so P ′(g, s) � 2(4/21) < 1/2 by Theorem 2.1.

Now consider the case where q = 5 or 9 and g is a graph automorphism. Let M1,M2,M3
be the maximal subgroups in Lemma 5.15(b); when q = 9 let M4 be the maximal sub-
group in Lemma 5.15(c). After renumbering if needed, we may assume that M

g

1 and M1
are S-conjugate, and hence M

g
j and Mj are not S-conjugate for j = 2,3. So if J < S, then

J is either contained in M1, M2 ∩ M3 or M4. By Lemma 5.15(d), J � M1 or M4. Conse-
quently, as in Lemma 5.11(c), by Theorem 2.1 we have P ′(s, g) � μ(g,S/M1) < 1/21 or
P ′(s, g) � μ(g,S/M1) + μ(g,S/M4) � 2(4/27) < 1/3.

The only remaining case is when q = 9 and g is a field automorphism. We may assume that
g normalizes M1. Then we observe that |M1| < 2 · 816 = 2 · 324 and |gS | = |S : CS(g)| > 326.
Let T := 〈M1, g〉. We use the crude strict upper bound |M1|/2 for the number of involutions
in T \ M1. (This can be seen in many ways. For example, we can use the fact that the total
number of involutions in T is at most the sum of the degrees of the distinct irreducible characters
of T ; moreover, any irreducible character that is nontrivial on F ∗(T ) has degree at least 9, and
|T/F ∗(T )| = 8, so that the number of involutions in T is less than |T |/8 = |M1|/4. Alternatively,
one can compute this in GAP.) Thus, μ(g,S/M1) < 1/9. By Theorem 2.1, μ(g,S/M4) � 4/27.
So P ′(s, g) < 3(1/9) + 4/27 < 1/2, as required.

5.8. G = �−(2m,q)

Proposition 5.16. If m � 11, use s : (2m−10)− ⊥ 6− ⊥ 4− of order lcm(qm−5 +1, q3 +1, q2 +
1)/gcd(2, q − 1). ThenM(G, s) = {G4− ,G6− ,G10+}, and σ(G, s) < 1/3.

Proof. We will use e = 2m − 10 in [19, Ex. 2.1 to 2.9] (cf. Section 5.1).
Ex. 2.1 is excluded because �−(2m,q0) is impossible by the choice of |s|.
Ex. 2.3 and Ex. 2.6(a) are excluded using Remark 5.1. More precisely, s can involve at most 3

cycles and the cycle sizes are at most 1 larger than the dimensions of the irreducible constituents
of s. Thus, |s| � (q − 1)(2m − 10 + 1)(6 + 1)(4 + 1), which is not the case.

In Ex. 2.4(b), only b = 2 can occur since each irreducible constituent of s is defined over the
field of size qb , in particular b divides 4 and 6. This only leaves the possibilities for the nor-
malizers of SU(m,q) and �(m,q2), which cannot occur since orthogonal and unitary groups do
not contain irreducible elements on both odd- and even-dimensional nondegenerate Fq2 -spaces
(dimensions 2 and 3 here, see Lemma 2.8 and Remark 5.2).

Ex. 2.6(b)–(c), Ex. 2.4(a), Ex. 2.5, Ex. 2.7, Ex. 2.8, and Ex. 2.9 are excluded by Re-
mark 5.1(iii).

Finally, Ex. 2.2 yields the groups G(2m−4)+ , G(2m−6)+ , and G10+ . By [16, Proposition 3.16],
μ(G,G/G(2m−4)+) + μ(G,G/G(2m−6)+) + μ(G,G/G10+) � (2/qm−2 + 1/qm + 1/qm−2 +
1/q4)+ (2/qm−2 +1/qm +1/qm−3 +1/q6)+ (2/qm−2 +1/qm +1/qm−5 +1/q10) < 1/8. �
Proposition 5.17. Assume that m � 7 is odd.

(i) If (m,q) �= (7,2), use s : (m+ 1)− ⊥ (m− 5)− ⊥ 4− of order lcm(q(m+1)/2 + 1, q(m−5)/2 +
1, q2 + 1)/gcd(2, q − 1). Then σ(G, s) < 1/3 and M(G, s) = {G(m+1)− ,G(m+5)+ ,

G(2m−4)+}.
(ii) For �−(14,2) and an irreducible s of order 27 + 1, σ(G, s) < 1/3.
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Proof. (i) Let d = 2m.
We will use e = m + 1 in [19, Ex. 2.1 to 2.9] (cf. Section 5.1).
Ex. 2.1 is excluded because �−(2m,q0) is impossible by the choice of |s|.
Ex. 2.3 and Ex. 2.6(a) are excluded using Remark 5.1, since |s| > (q − 1)m2, which is not the

case.
In Ex. 2.4(b), only b = 2 can occur since each irreducible constituent of s is defined over the

field of size qb, in particular b divides 4 and 6. This only leaves the possibilities for the nor-
malizers of SU(m,q) and �(m,q2), which cannot occur since orthogonal and unitary groups do
not contain irreducible elements on both odd- and even-dimensional nondegenerate Fq2 -spaces
(dimensions 2 and 3 here, see Lemma 2.8 and Remark 5.2).

Ex. 2.6(b)–(c), Ex. 2.4(a), Ex. 2.5, Ex. 2.7, Ex. 2.8, and Ex. 2.9 are excluded by Re-
mark 5.1(iii).

Finally, Ex. 2.2 yields the groups G(2m−4)+ , G(m+1)− , and G(m+5)+ . By [16, Proposi-
tion 3.16], μ(G,G/G(2m−4)+)+μ(G,G/G(m+1)−)+μ(G,G/G(m+5)+) � (2/qm−2 + 1/qm +
1/qm−2 +1/q4)+ (2/qm−2 +1/qm +1/q(m+1)/2 +1/qm−1)+ (2/qm−2 +1/qm +1/q(m+5)/2 +
1/qm−5), which is less than 1/3 if m � 9 or if m = 7 and q > 2.

(ii) By [2],M(G, s) = {GU(7,2)}, and then σ(G, s) < 1/3 (Table 3). �
Proposition 5.18. If m ∈ {4,5,6,8,10} and s ∈ G is irreducible of order (qm +1)/gcd(2, q −1),
then σ(G, s) < 1/3.

Proof. By [2, Main Theorem] or [26, Theorem 1.1], M(G, s) consists of extension field type
subgroups of G. If m is even then they are of the form Mb = �−(2m,q) ∩ GO−(2m/b,qb) |�
�−(2m/b,qb), for prime divisors b of m (note that for even m, GU(m,q) is not an overgroup
of s).

Since s acts irreducibly, M(G, s) contains at most one group for each extension field, by
Lemma 2.12.

Let g ∈ G \ Z(G), and set B = max{b | g ∈ Mb}. By (2.4), σ(g, s) = ∑
b�B μ(g,G/Mb).

Note that we can replace g by a conjugate in G in order to have g /∈ Z(MB). (That is, if g is in
this center then it can be viewed as a matrix of blocks, and one of those blocks can be conjugated
to a nontrivial power of itself within G while leaving the remaining blocks unchanged, thereby
moving g into MB \ Z(MB).)

The cases (m,q) ∈ {(4,2), (4,3), (6,2)} are handled with GAP (Table 3).
Let m = 4, q � 4. Then M(G, s) = {M2} with M ′

2 = PSL(2, q4). We apply Lemma 2.3,
with U = M2 and H = 〈gU 〉 = 〈gH 〉, together with elementary bounds [25, Theorem 1′ and
Table 1] on fixed point ratios for PSL(2, q2B), and obtain μ(g,G/MB) � (qB + 2)/(q2B + 1) +
|MB |/|G| < 1/3.

If m = 6 and q � 3 then B � 3 andM(G, s) = {M2,MB}. By Lemma 2.3, again with U =
M2 and H = 〈gU 〉 = 〈gH 〉, and Theorem 2.1, we get μ(g,G/M2) � 4/3q2 � 4/27. As in the
case m = 4, M ′

3
∼= PSL(2, q6) and μ(g,G/M3) � (q3 + 2)/(q6 + 1) + |M3|/|G| < 5/27. Thus,

σ(g, s) < 4/27 + 5/27 = 1/3.
If m = 8 then M(G, s) = {M2}. Lemma 3.5 yields σ(G, s) � 1/q2m−3 < 1/3 if q is even,

and Lemma 2.3 yields σ(G, s) � 4/3q2 < 1/3 when q � 3.
If m = 10 then B ∈ {2,5} andM(G, s) = {M2,MB}. As above, if B = 2 then μ(g,G/M2) is

bounded by 4/3q2 � 4/27 for q � 3 and by 1/217 < 1/3 for q = 2. If B = 5 then we argue as in
the case m = 6, and get μ(g,G/M5) � (q5 + 2)/(q10 + 1) + |M5|/|G| < 5/27, which implies
σ(g, s) < 4/27 + 5/27 = 1/3.
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If m = 5 then M(G, s) = {NG(SU(5, q))}, so we can use Theorem 2.1 if q � 5. The cases
q = 2 and q = 3 are handled with GAP (Table 3). If q = 4 thenM(G, s) = {GU(5,4)}, and the
proposition follows from Lemma 3.9. �
Remark. In all the cases above, the same proofs are valid for the almost simple case. Note that
GAP computations are needed only for �−(12,2), see Table 8.

5.9. G = �(2m + 1, q)

The case of even q was dealt with for the isomorphic group Sp(2m,q); the case m = 2 was
dealt with for Sp(4, q); and the case q = 3 with even m was dealt with in Section 5.3. Thus, we
may assume that either q = 3 and m is odd, or q > 3 is odd and m � 3.

Proposition 5.19. Assume that q = 3 and m � 3 is odd.

(a) If m = 3 then G = �(7,3) is an exception in Theorem 1.1 but has uniform spread at least 3.
(b) If m � 5, use s : [3] ⊥ (2m − 2)− of order q(qm−1 + 1)/2, where the invariant 3-space is

indecomposable and s fixes a (singular) 1-space L, say. ThenM(G, s) = {G1,G(2m−2)−},
where G1 is the stabilizer of L, and P(G, s) < 1/3.

Proof. (a) See Table 3.
(b) The statement aboutM(G, s) follows from [19]. Let O = LG, and let V , q , Q be as in

Lemma 5.6.

Case 1. g ∈ G with −g is a reflection in GO(2m + 1,3). We may choose g = −Q. Then g fixes
a vector of norm −1.

Counting the number of singular 1-spaces in the hyperplane CV (−g) and using Lemma 5.6,
we get

μ(g,G/G1) = μ(g,O) = 3m−1(3m − 2) − 1

32m − 1
< 1/3 − 1/3m+1.

We claim that P(g, s) − μ(g,G/P1) < 1/3m+1, so that P(g, s) < 1/3. Note that, in view of
M(G, s), {g′ ∈ gG | 〈s, g′〉 �= G} is the disjoint union of gG ∩G1 and {g′ ∈ gG | g′ ∈ G(2m−2)− \
G1}. Hence, if V1 denotes the invariant 3-space of s, then P(s, g)−μ(g,G/G1) is the proportion
of conjugates g′ of g that fix V1 but not L, and that V1 must contain the fixed space of any such g′.
(The generator of L must involve components v1, v−1 from the ±1 eigenspaces of g′; the image
of v1 + v−1 ∈ L is v1 − v−1, so v1 lies in V1.) Since V1 contains only six 1-spaces of norm −1
and −g is a reflection, there are at most six possibilities for g′. The claim follows from the fact
that 6/|gG| = 12/(3m(3m − 1)) < 1/3m+1.

Case 2. 1 �= h ∈ G \ gG. Arguing as in the proof of Proposition 5.7(c), we get

μ(h,G/G1) = μ(h,O) � (3m − 1) + 3m−1(3m−1 + 2)

32m − 1
< 1/9 + 1/34.
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By [16, Proposition 3.16] with k = 2m − 2 and l = m − 1,

μ(h,G/G(2m−2)−) � 2/qm−1 + 1/qm + 1/qm−1 + 1/q3 � 2/33 + 1/35.

Thus, σ(h, s) < 2/9. �
Proposition 5.20. For q > 3, use s : 1 ⊥ 2m− of order (qm + 1)/2. Then M(G, s) = {G2m−},
and σ(G, s) < 1/3.

Proof. The statement aboutM(G, s) follows from [26, Theorem 1.1], and [16, Proposition 3.16]
yields μ(G,G/G2m−) � 1/q + 3/qm−1 + 1/qm, which is less than 1/3 if q > 3. �
Remark. For the almost simple case (Theorem 1.4), we can argue as we did for the simple group.
Alternatively, we can argue as in the previous proposition but allow g ∈ Aut(G) and also allow
q = 3 for m > 3. This time |M(G, s)| = 1 and so P ′(g, s) < 1/2.

Only �(7,3) needs computational verification, see Table 8.

5.10. G = SU(2m + 1, q)

Proposition 5.21. Suppose that (m,q) /∈ {(1,3), (1,5), (2,2)}. If s is irreducible of order
(q2m+1 + 1)/(q + 1), thenM(G, s) consists of extension field type subgroups of G of the form
Mb = NG(SU(2m + 1/b, qb)), for prime divisors b of 2m + 1, one overgroup per b. Moreover,
σ(G, s) < 1/3.

Proof. The statement about the structure of the groups inM(G, s) follows from [2, Main The-
orem], and Lemma 2.12 yields the statement about their number.

Let g ∈ G \ Z(G), and set B = max{b | g ∈ Mb}. As usual, we have

σ(g, s) =
∑
b�B

μ(g,G/Mb).

As in the proof of Proposition 5.18, if necessary we can modify g in order to assume that the
normal closure H of g in MB contains M ′

B .
Clearly H = 〈gH 〉 has no fixed points on G/Mb for b �= B and exactly one fixed point on

G/MB . Thus, by Theorem 2.1 and Lemma 2.3 (with U = Mb), μ(g,G/Mb) � 4/3qB if b �= B

and μ(g,G/MB) � 4/3qB + 1/[G : MB ], so that σ(g,G) � (B − 2) · 4/(3qB) + 1/[G : MB ] <

1/3. (As in the proof of Proposition 5.18, the term B − 2 is a crude upper bound on the number
of prime divisors of 2m + 1.) �

The remaining cases for (m,q) are (1,3), (1,5), and (2,2). They are handled using GAP
(Table 4).

Remark. The proof of the bound in the proposition for the almost simple case goes through
verbatim. The three remaining cases are in Table 8.
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5.11. G = SU(2m,q), m � 2

Proposition 5.22. Suppose that m > 1 and (m,q) /∈ {(2,2), (2,3), (3,2)}. Take s : 1 ⊥ (2m − 1)

of order q2m−1 + 1, thenM(G, s) = {G1}, and σ(G, s) < 1/3.

Proof. The statement aboutM(G, s) follows from [26, Theorem 1.1], and Theorem 2.1 implies
the statement about σ(G, s) for q � 5. For m � 3, [16, Proposition 3.16] yields μ(G,G/G1) �
2/q2(m−2) + 1/q2m−1 + 1/q2l + 1/q2, with l = m, which is smaller than 1/3 if m > 4 or
(m,q) ∈ {(3,4), (4,3), (4,4)} holds. The cases (m,q) ∈ {(2,4), (3,3), (4,2)} are treated with
GAP (Table 4). �

The remaining cases are SU(4,2), SU(4,3), and SU(6,2). They are handled by GAP compu-
tations (Table 4); for SU(4,2), they show that this group is an exception for Theorem 1.1 but not
for Theorem 1.2.

Remark. In the almost simple case, Proposition 2.6 yields the result.

5.12. G = SL(d, q)

We begin with large dimensions:

Proposition 5.23. If d � 8 and d �= 11 and (d, q) /∈ {(8,2), (10,2)}, use s : e ⊕ (d − e) of order
lcm(qe − 1, qd−e − 1)/(q − 1), where

e =
{

(d + 1)/2 if d is odd,

d/2 + 2 if d ≡ 2 mod 4,

d/2 + 1 if d ≡ 0 mod 4.

ThenM(G, s) = {Ge,Gd−e}, and σ(G, s) < 1/4.

Proof. We have d/2 < e � d − 3. In Ex. 2.1, clearly no SL(d, q0) can occur, Sp(d, q0) is ex-
cluded because e is odd if d is even, and �(d,q0) is excluded because at least one of e, d − e is
odd and O(2m + 1, q0) does not contain irreducible elements.

Ex. 2.2 yields M(G, s) = {Ge,Gd−e}, where μ(G,G/Ge) = μ(G,G/Gd−e) < 2/qd−e �
1/8 by [16, Proposition 3.1(i)]. (N.B.—We are using the fact that our choice of e implies that
gcd(e, d − e) = 1, which eliminates the possibility of a unitary overgroup. Note that d − e � 4
holds except if d ∈ {8,10}, so we have q � 3 if d − e = 3.)

Ex. 2.3 and Ex. 2.6(a) are excluded by Remark 5.1, since our choice of s satisfies |s| �
(q − 1)(d + 2)2/4.

All possibilities in Ex. 2.4(a), Ex. 2.5, Ex. 2.6(b) and (c), Ex. 2.7, Ex. 2.8 and Ex. 2.9 are
excluded by the fact that either e � d − 3 or e = d − 3 is odd, see Remark 5.1(iii). �
Proposition 5.24. For d = 2 and q /∈ {4,5,7,9}, or d = 3 and q �= 4, or d ∈ {4,5,7,11}, let s

be irreducible of order (qd − 1)/(q − 1). Then |M(G, s)| = 1, and σ(G, s) < 1/3.

Proof. By [2, Main Theorem], any maximal subgroup containing s is of extension field type. If
d �= 4 thenM(G, s) = {NG(〈s〉)}, while if d = 4 thenM(G, s) = {NG(SL(2, q2))}. Now the re-
sult follows from Theorem 2.1 if q � 5. For d ∈ {5,7,11} and q ∈ {2,3,4}, we apply Lemma 3.8,
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and get σ(G, s) < 1/2d < 1/3. In the cases (d, q) ∈ {(3,2), (3,3), (4,2), (4,3), (4,4)}, we com-
pute σ(G, s) (Table 5). �
Proposition 5.25. If d = 6 and q � 7, use s : 5 ⊕ 1 of order q5 − 1. ThenM(G, s) = {G1,G5},
and σ(G, s) < 1/3.

Proof. The fact that e is odd excludes Ex. 2.3, Ex. 2.4(a), Ex. 2.5, and Ex. 2.6(a).
Ex. 2.6(b) and (c) are excluded because Tables 2 to 4 in [19] contain no entry with e = 5.
Ex. 2.1(b) and (d) cannot occur because e is odd, and (a) (for q0 < q) and (c) cannot occur

because |s| is too large.
Ex. 2.2 yields M(G, s) = {G1,G5}. By [16, Proposition 3.1(ii)], μ(G,G/G1) =

μ(G,G/G5) < 1/q + 1/q5, which is smaller than 1/6 for q � 7.
Ex. 2.4(b) is excluded because gcd(d, e) = 1.
Ex. 2.7 is excluded because the only cases in [19, Table 5] where e = 5 and d = 6 are 2.M12

or 3.M22, but |s| is too large for these when q � 3.
Ex. 2.8 is excluded because [19, Table 6] contains no entry for e odd.
Ex. 2.9 is excluded because [19, Table 7] contains no entry for e = 5, and the only entry for

odd e in [19, Table 8] has PSL(2, t) for t = 2e + 1 = 11; but the maximal element order in this
group is 11, whereas |s| � 1023. �

In order to complete the proof of Theorem 1.1 for the groups SL(d, q), it remains to consider
the cases (d, q) ∈ { (2,4), (2,5), (2,9), (2,7), (3,4), (6,2), (6,3), (6,4), (6,5), (8,2), (10,2)}.
The first three are handled below in Section 6 using alternating groups, Proposition 5.24 handles
PSL(2,7) ∼= PSL(3,2), and the last seven groups are in Table 5.

Remark. The proof of the result in the almost simple case goes through with no changes, includ-
ing the computational cases (see Section 4.8).

6. The remaining simple groups

In this section we complete the proof Theorem 1.1 by considering the sporadic simple groups,
the simple exceptional groups of Lie type, and the simple alternating groups.

Lemma 6.1. If G is a sporadic simple group different from M11 and M12 then there exists s ∈ G

such that σ(G, s) < 1/3. If G = M12, P(G, s) < 1/3 holds with s of order 12. The group G =
M11 satisfies PG = 1/3 and has uniform spread at least 3 (with s of order 11).

If S = F ∗(G) is a sporadic simple group with G �= S, then [G : S] = 2, and σ ′(G, s) < 1/7
using the same s chosen for the simple group. In particular, sporadic simple groups yield no
exceptions in Theorem 1.4.

Proof. See Section 4, Tables 7 and 9. �
The next lemma deals with the exceptional group case of Theorem 1.4.

Lemma 6.2. If F ∗(G) = S is an exceptional simple group of Lie type, there exists s ∈ S such that
P ′(g, s) < 1/3 whenever 1 �= g ∈ G.
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Proof. For G2(4), 2F4(2)′ and G2(3), use [16, Proposition 6.2]. In the remaining cases, by [16,
Propositions 6.1 and 6.2] we can choose s with |M(G, s)| � 2, and [24, Theorem 1] yields
σ(G, s) � 2/13. �

Now we turn to the alternating groups. As in [16, Section 7], these are not as easy to deal with
as one might expect. However, even degree is straightforward:

Proposition 6.3. Each alternating group G = A2m, m � 4, contains an element s such that
σ(G, s) < 1/3.

Proof. Let s be a product of two cycles of relatively prime lengths m1 = m − gcd(2,m − 1) and
m2 = m + gcd(2,m − 1), as in [6]. Then s lies in a unique maximal subgroup M of A2m: the
stabilizer of an m1-subset (cf. [16, p. 776]). The action on the cosets of M is equivalent to that
on the set X of m1-subsets of {1,2, . . . , n}. We estimate μ(g,G/M), for an element g ∈ G of
prime order p, say, using arguments appearing in the proof of [16, Lemma 7.4]. Without loss of
generality, let g = (1,2, . . . , p)(p + 1,p + 2, . . . ,2p) · · ·.

If p is odd then FixX(g) is contained in FixX((1,2, . . . , p)), so assume g = (1,2, . . . , p).
Each fixed point of g is an m1-set that either contains or is disjoint from {1,2, . . . , p}. Thus,
|FixX(g)| = (2m−p

m1

) + (2m−p
m2

)
�

(2m−3
m1

) + (2m−3
m2

)
, so we may assume that g is a 3-cycle and

μ(g,X) = |gG ∩ M|
|gG| = m2(m2 − 1)(m2 − 2) + m1(m1 − 1)(m1 − 2)

2m(2m − 1)(2m − 2)

=
⎧⎨
⎩

(2m−2)(m2−2m+3)
2m(2m−1)(2m−2)

< 1/4 if m is even,

(2m−2)(m2−2m+12)
2m(2m−1)(2m−2)

< 1/3 if m is odd.

If p = 2 then FixX(g) ⊆ FixX((1,2)(3,4)), so assume that g = (1,2)(3,4). Each fixed point
of g either contains or is disjoint from {1,2,3,4}, or else contains exactly one of the pairs
{1,2}, {3,4}. Then |FixX(g)| = (2m−4

m1

) + (2m−4
m2

) + 2
(2m−4
m1−2

)
, and this time we obtain

μ(g,X) �
{
m2(m2 − 1)(m2 − 2)(m2 − 3) + m1(m1 − 1)(m1 − 2)(m1 − 3)

+ 2m1(m1 − 1)m2(m2 − 1)
} / (

3m(2m − 1)(2m − 2)(2m − 3)
)

=
⎧⎨
⎩

4(m−1)(m−2)(m2−m+3)
3m(2m−1)(2m−2)(2m−3)

< 1/4 if m is even,

4(m4−4m3+14m2−35m+36)
3m(2m−1)(2m−2)(2m−3)

< 1/3 if m is odd. �
In fact, by [6], for m � 4, A2m has uniform spread exactly 4, and the above proof shows that

μ(g,X) < 1/4 also for odd m � 9.
For symmetric groups, we get a similar result:

Lemma 6.4. Let G = S2m with m > 3. Let s ∈ A2m be a product of two disjoint cycles of length
m + 1 and m − 1 if m is even or m � 7. If m > 7 is odd, let s be a product of two disjoint cycles
of lengths m + 2 and m − 2. Then P ′(g, s) < 1/2 for every nontrivial g ∈ G.
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Proof. We may assume that g has prime order p. If m > 7 or m is even, the proof above gives the
result unless g is a transposition. If g is a transposition, then 1−P ′(g, s) = (m2 −a)/m(2m−1),
where a = 1 when m is even and a = 4 when m is odd. This gives the result.

If m = 5 or 7, then s is contained in precisely two maximal subgroups: the stabilizer of an
orbit of 〈s〉 and the stabilizer of a partition into blocks of size 2; each orbit of 〈s〉 is a union
of blocks. If g is a transposition, then g preserving the partition implies that g preserves each
orbit of s (for if g moves a block, it will move at least 4 elements—indeed, the same holds for
any cycle of prime length). The probability that a random transposition fixes the orbits of s is
21/45 < 1/2 (and is even less for a cycle).

So assume that g has more than one orbit. It is straightforward to compute that
∑ |gG ∩

M|/|gG| < 1/2 where the sum is over the two elements ofM(A2m, s). �
The case of odd degree is more complicated because no element of An has precisely two

orbits. We are forced to deal with n-cycles, which can live in several maximal subgroups.
However, there is no problem if we work in Sn:

Lemma 6.5. Let n = 2m + 1 > 6 and G = Sn. Let s be the product of two disjoint cycles of
length m and m+ 1. Then s is contained in a unique maximal subgroup, namely Sm ×Sm+1, and
P ′(g, s) < 1/2 for any nontrivial g ∈ G.

Proof. Clearly there are no transitive imprimitive groups containing s. Since no primitive group
other than An or Sn contains a cycle of length less than n/2 [30], there are no proper primitive
overgroups of s, whence the statement about maximal overgroups of s. As in Lemma 6.3, we
reduce to the case where g is a p-cycle for some prime p and then to the case where g is a
transposition. Then 1 − P ′(g, s) = (m2 + m)/(m(2m + 1)) > 1/2. �

It is not hard to show that, if g is a transposition, s is an n-cycle and n is divisible
by many small primes, then 1 − P ′(g, s) can be arbitrarily small (this is already observed
in [16, pp. 786–787]). We will see in Proposition 6.8 that P ′(g, s) < 1/3 when s is an n-cycle
and g is not a transposition (in Sn for odd n � 9).

We begin by using Stirling’s formula to estimate sizes of conjugacy classes:

Lemma 6.6. Let G = An, n > 24. Let x ∈ Sn have prime order p. and assume that x fixes at
most n/2 of the n points, then |xG| � 23n/4(n/e)n/4/8

√
πn.

Proof. Let x have t � n/2 fixed points. Note that xG = xSn except when x is an n or n− 1 cycle
in which case the result is obviously true. So we assume that this is not the case. If r = |x|, then
|CG(x)| = f (r, t) := t !rdd!, where d = (n− t)/r . Since we need to estimate the maximum value
of |CG(x)|, it follows easily that we may assume that r = 2.

First we deal with the case n = 4m. It is also straightforward to compute f (2, t)/f (2, t + 2)

to see that f (2, t) decreases from t = 0 to its minimum and then increases again (note that we
must retain the requirement that n− t is even here). Thus, it suffices to prove the inequality when
t is 0 or 2m.

We obtain an estimate when t = 2m; it is not difficult to see that this gives the larger central-
izer. By Stirling’s formula (using upper and lower bounds [27]),
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∣∣xG
∣∣ = n!

2mm!(2m)!

�
√

2πn(n/e)n

2n/4
√

2πm(m/e)me1/12m · √2π2m(2m/e)2me1/24m

=
√

2πn(n/e)n

π(n/2)
√

2(n/2e)3n/4e1/2n
= 23n/4+1(n/e)n/4

√
πne1/2n

.

If n is not divisible by 4, choose 1 � a � 3 with m = n+a divisible by 4. We need to estimate
the class size of xG where x is an involution moving at least m/2 points. Consider the worst case:
a = 3. We have an estimate for |xSm |. Note that |xSm−3 | = (m/2−3)(m/2−2)(m/2−1)/m(m−
1)(m − 2)|xSm | > |xSm |/12. Using the estimate above for |xSm | shows that

∣∣xSm
∣∣ � 23(n+3)/4+1(n/e)(n+3)/4

√
π(n + 3)e1/2(n+3)

> 12
23n/4+1(n/e)n/4

√
πne1/2n

,

which yields the result. �
Proposition 6.7. Each alternating group G = A2m+1, m � 4, contains an element s such that
σ(G, s) < 1/3.

Proof. Let n = 2m + 1, and let s be an n-cycle. Table 6 implies the proposition when 4 �
m � 11.

Now assume that n � 25. As noted in [16, Proposition 7.6], each group M ∈M(G, s) is of
one of the following types:

(a) NG(〈s〉); this occurs only if n is prime, and there is clearly a unique such group.
(b) P	L(d, q) ∩ An, for n = (qd − 1)/(q − 1), where q is a prime power and d � 2; there are at

most log2 n possibilities for the pair (q, d) (since clearly d � log2 n). For a given d, q with
n = (qd − 1)/(q − 1), we note that there is a single conjugacy class of subgroups in An.
If the n-cycle s is in H ∼= P	L(d, q), then the number of conjugates of H containing s is
|NG(〈s〉) : NH (〈s〉)| � (n − 1)/d � (n − 1)/2.

(c) (Sn/l �Sl)∩An for divisors l of n such that 1 < l < n; for each l there is a unique such group
containing s.

We now estimate the fixed point ratio for each of these cases.

Case (a). By [16, Proposition 7.6], μ(g,G/M) � 2 · (4/(n + 1))(n−3)/2 < 10−8.

Case (b). If M = P	L(d, q) ∩ An then we first note that any g ∈ M fixes less than n/2 points
(no nontrivial element fixes more than the number of 1-spaces in a hyperplane). We use the very
crude bound μ(g,G/M) < |M|/|gG|.

Note that |M| < nlog2 n+1. Combining this with Lemma 6.6 yields

μ(g,G/M) < 8nlog2 n+1√πn/23n/4(n/e)n/4.

In order to sum over all possibilities for such subgroups M containing a given s, we multiply the
right-hand side by (n − 1)(log2 n)/2.
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Thus, the probability that g and s are contained in such an M is less than
4n3nlog2 n

√
πn/23n/4(n/e)n/4. If n > 64, this shows that the sum of the fixed point ratios is

less than (n/e)−5 < 20−5 < 10−6.
Suppose that 25 � n < 64. The only possible pairs with d = 2 have q a power of 2 (since

n is odd). So q = 32 and n = 33 is the only case that occurs (and there will be precisely two
such subgroups containing a given n-cycle). Arguing as above (but using the fact that there are
only two maximal subgroups in this case and using the explicit formula for |M|), we see that
the upper bound 10−6 is still valid. If d > 2, the only possible n and pairs (q, d) are n = 31
(for (q, d) = (2,5) or (5,3)) and n = 57 (for (q, d) = (7,3)). For n = 31, there are 16 different
choices for M and for n = 57, there are 12 choices. Again, in each case, we use the above
inequality to verify that the bound 10−6 is still valid.

Case (c). More work is needed when M = (Sn/l � Sl) ∩ An. Here l is odd since it is a factor of n.
We may assume that |g| = p is prime, that we are permuting {1, . . . , n}, and that

g = (1,2, . . . , p)(p + 1, . . . ,2p) · · · ,
where of course there may only be one nontrivial cycle; we will read mod p within each nontrivial
cycle of g. We will use arguments and notation appearing in the proof of [16, Lemma 7.4], cf. the
proof of Proposition 6.3.

Subcase (c1). If p is odd we will show that

μ(g,G/M) � μ
(
(1,2,3),G/M

)
< 1/l2. (6.8)

Namely, for the first of these inequalities we construct an injection θ : FixG/M(g) →
FixG/M((1,2,3)), as follows. Identify G/M with the set of block systems on {1, . . . , n}
with blocks of length n/l, and let π ∈ FixG/M(g); this is a partition of our n-set. If π ∈
FixG/M((1,2,3)) then set πθ = π ; otherwise the points 1,2,3 are in three different blocks
of π , so π is a partition of the form (1, i, j,∗/2, i + 1, j + 1,∗/3, i + 1, j + 2,∗/ . . .), and we
define πθ = (1,2,3,∗/i, i + 1, j + 2,∗/j, j + 1, i + 2,∗/ . . .). Then πθ ∈ FixG/M((1,2,3)) \
FixG/M(g), and π can be recovered from πθ because i and j are determined by the fact that πθ

has exactly two blocks meeting cycles of g in exactly two points. (Other cycles of g lie either
inside blocks of π or meet blocks of π in at most one point.)

For the second part of (6.8), note that |G/M| = n!/[(n/l)!l l!] and |FixG/M((1,2,3))| = (n −
3)!/[(n/l − 3)!(n/l)!l−1(l − 1)!] (since each fixed point of (1,2,3) has one distinguished block
containing {1,2,3}). Thus,

μ
(
(1,2,3),G/M

) = (n/l − 1)(n/l − 2)/
[
(n − 1)(n − 2)

]
< 1/l2,

as claimed.

Subcase (c2). Now let p = 2. We will show that

μ(g,G/M) <

{
8/(n − 1)(n − 2) < 1/69 if n/l = 3,

(l + 1)/ l3 otherwise.
(6.9)

For that, we will first compute |FixG/M((1,2)(3,4))|, and then compare this with |FixG/M(g)|.
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Each element in FixG/M((1,2)(3,4)) is of the form (1,2,∗/3,4,∗/ . . .) or (1,2,3,4,∗/ . . .),
the latter occurring only for n/l > 3. There are (n − 4)!/[(n/l − 2)2 · (n/l)!l−2 · (l − 2)!] fixed
points of the first form, and (n − 4)!/[(n/l − 4) · (n/l)!l−1 · (l − 1)!] of the second form when
n/l > 3. The corresponding fixed point ratios are n/l · (n/l − 1)2 · (l − 1)/((n − 1) · (n − 2) ·
(n − 3)) < (l − 1)/ l3 and (n/l − 1) · (n/l − 2) · (n/l − 3)/[(n − 1) · (n − 2) · (n − 3)] < 1/l3,
respectively.

Now we define a map θ from FixG/M(g) to FixG/M((1,2)(3,4)), as follows. Let π ∈
FixG/M(g). If π ∈ FixG/M((1,2)(3,4)) then set πθ = π . Otherwise π is of the form
(1,3,∗/2,4,∗/ . . .) or (1,∗/2,∗/3,∗/4,∗/ . . .). For fixed points of the first kind, we set
πθ = (1,2,∗/3,4,∗/ . . .); this is injective because just the points 2 and 3 are exchanged,
and the image clearly does not lie in FixG/M(g). For fixed points π of the second kind,
if n/l > 3 write π = (1, i, j, k,∗/2, q, r, s,∗/3,∗/4,∗/ . . .), with i < j < k, and set πθ =
(1,2,3,4,∗/i, q, r, s,∗/j,∗/k,∗/ . . .); the image is not fixed by g, and the map is 2 to 1 on
the fixed points of this type (because we cannot distinguish i and q). For fixed points of the
second kind when n/l = 3, we map π = (1, i, j/2, q, r/3, s, t/4, u, v/ . . .) to

πθ = (1,2, q/3,4, r/i, s, t/j,u, v/ . . .) = (1,3, q/2,4, r/i, s, t/j,u, v/ . . .)θ.

This image is not fixed by g, and θ restricted to the fixed points of the second kind is injective.
Thus, each element of Im θ has at most 2 preimages.

Putting the pieces together, we obtain (6.9): μ(g,G/M) < (l − 1)/ l3 + 2/l3 for n/l �= 3, and
μ(g,G/M) < 2μ((1,2)(3,4),G/M) = 2 · 3 · 22(n/3 − 1)/(n − 1)(n − 2)(n − 3) < 1/69 when
n/l = 3 (since n � 27).

Completion of the proof of Proposition 6.7. The total contribution of Case (c) subgroups to
σ(G, s) is thus less than 1/69 + ∑∞

k=1(1/(2k + 1)2 + 1/(2k + 1)3) < 1/69 + (π2/8 − 1) +
6/100 < 1/3 − 10−6 − 10−8.

When combined with our estimates in (a) and (b), this proves the proposition. �
This completes the proof of Theorem 1.1 for alternating groups other than A5, A6, and A7.

The latter groups are handled computationally (Section 4, Table 6).

Proof of Theorem 1.4. We have included Remarks in each section in order to deal with this
variation of Theorem 1.1. If F ∗(G) = A5 or A6, the result follows by our computational results.
When G = Sm, m > 6, the result follows from Lemmas 6.4 and 6.5. This completes the proof of
Theorem 1.4. �

We conclude with some observations concerning symmetric groups.

Proposition 6.8. Let G = S2m+1 with m � 4. If s is a cycle of length 2m + 1 (so s ∈ A2m+1) and
g is neither trivial nor a transposition, then P ′(g, s) < 1/3.

Proof. By Lemma 6.7, P(g, s) < 1/3 for g ∈ A2m+1 and hence also for any g whose order is
greater than 2 (since g2 will be in A2m+1). So we only need consider the case where g is an
involution but not a transposition. In that case the argument used in Lemma 6.7 for elements of
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A2m+1 applies (for primitive overgroups, there is no difference; for imprimitive overgroups M ,
we saw that μ(g,G/M) is largest when g is a product of two disjoint transpositions). �

Finally, we sketch a proof that, when G = S2m+1 in Corollary 1.5, we can choose s ∈ A2m+1:

Proposition 6.9. Let G = Sn with n � 5 odd. If x and y are nontrivial elements of G, then there
is an n-cycle s such that 〈s, x〉 and 〈s, y〉 both contain An.

Proof. We must find a conjugate of s′ = (1,2, . . . , n). We may assume that x and y have prime
orders p and q , respectively. If neither x nor y is a transposition, the result follows from the
previous proposition. So we may assume that x = (12) and hence G = 〈s′, x〉. If y is also a trans-
position, then we may assume that y = (13) or (34) (by conjugating by an element of CG(x)); in
the either case, s′ behaves as required. Thus, from now on we assume that y is not a transposition.

Note that P ′(s′, x) = 1 − ϕ(n)/(n − 1), since G = 〈s′,w〉 for a transposition w = (ij) if and
only if gcd(j − i, n) = 1. As n is odd, for n � 100 we deduce that P ′(s′, x) < 1/2; but P ′(s, y) <

1/3 by the previous proposition, so the result holds. Hence we may assume that n > 100.
We now construct a conjugate y′ = yg , g ∈ CG(x), such that, among other things, 〈s′, y′〉 is

primitive. Let u1, . . . , um be all of the distinct nontrivial divisors of n. Note that even a poor
estimate gives m <

√
n (since n > 3 is odd). We choose g ∈ CG(x) such that

y′ = yg :

{
3 �→ 4,

3 + ui �→ 5 + 2ui for 1 � i � m.

This can be done since m is small compared to n and there are no coincidences among the
numbers 3,4,3 + ui and 5 + 2uj (since 3 + ui is even and 5 + 2uj is odd). Observe that 〈s′, y′〉
is primitive. For if not, a nontrivial block system is the set of congruence classes modulo ui for
some i. The block containing 3 is moved by s′ to the block containing 4; but 3 and 3 + ui are in
the same block, whereas 4 and (3 + ui)

y = 5 + 2ui are not. This proves primitivity.
If 〈s′, y′〉 � S then s := s′g−1

behaves as required. Hence, we may assume that 〈s′, y′〉 lies
in some maximal overgroup of s′ other than S. In Proposition 6.7 we listed the possible such
overgroups; there are at most (n − 1) log2 n of them. Moreover, if f denotes the number of fixed
points of y′ other than 1, 2, 3, 4 (these points may or may not be fixed), then a glance at these
overgroups shows that f < n/2 − 4.

Claim. There is a transposition t = (k, l), k, l > 2, such that 〈s′, y′ t 〉 � S.

Once we prove this, clearly s := s′ (gt)−1
will behave as required since t commutes with x. We

restrict k and l as follows:

• k, l /∈ {1,2,3,4,3 + ui,5 + 2uj | 1 � i � m};
• k is moved by y′; and
• if q = 2 or 3, then l /∈ k〈y′〉.

Since n > 100, at least (n − f − 2m − 4)(n − 2m − 6)/2 > (n − 1) log2 n transpositions t meet
these conditions. For each of them, y′ t satisfies the same requirements as y′ did, and hence
Wt := 〈s′, y′ t 〉 is primitive.
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Suppose that y′ t = y′u for two distinct such transpositions t, u. Then tu commutes with y′,
is either a product of two disjoint transpositions or a 3-cycle, and moves a point k, say, moved
by y′. This implies that k〈tu〉 is an orbit of y′, whence q = 2 or 3; and we have explicitly excluded
this possibility in the construction of our transpositions. Consequently, we obtain more than
(n − 1) log2 n distinct elements y′ t .

If no Wt contains S, then, by the pigeonhole principle, 〈Wt,Wu〉 is contained in a primitive
maximal subgroup M of S (if y ∈ S) or G (if not) for distinct transpositions t , u. Then yt (yu)−1

is a nontrivial element in M , is a product of at most 4 transpositions, and so moves at most
8 < n/2 points. However, we already noted that no such overgroup of s′ exists. This finally
proves our claim, and hence also the proposition. �

It would be preferable to have an elementary proof of the preceding proposition.
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